一文剖析Linux内核中内存管理

news2025/7/8 6:30:15

Linux中内存管理

内存管理的主要工作就是对物理内存进行组织,然后对物理内存的分配和回收。但是Linux引入了虚拟地址的概念。

文章推荐:

关于如何快速学好,学懂Linux内核。内含学习路线

需要多久才能看完linux内核源码?

​​​​​​分析linux启动内核源码

一文了解Linux内核的Oops

Linux文件系统详解

虚拟地址的作用

如果用户进程直接操作物理地址会有以下的坏处:
1、 用户进程可以直接操作内核对应的内存,破坏内核运行。
2、 用户进程也会破坏其他进程的运行

CPU中寄存器中存储的是逻辑地址,需要进行映射才能转化为对应的物理地址,然后获取对应的内存。

通过引入逻辑地址,每个进程都拥有单独的逻辑地址范围。

当进程申请内存的时候,会为其分配逻辑地址和物理地址,并将逻辑地址和物理地址做一个映射。

所以,Linux内存管理涉及到了以下三个部分:

1、物理内存

物理内存的组织

Linux中内存分为3个级别,从下到上依次为:

1、Page: 一个page的大小为 4k, Page 是内存的一个最基本的单位。

2、Zone: Zone中提供了多个队列来管理page。
Zone分为3种
2.1、 ZONE_DMA: 用来存放DMA读取IO设备的数据,内核专用
2.2、 ZONE_NORMAL:用来存放内核的相关数据,内核专用
2.3、 ZONE_HIGHMEM:高端内存,用来用户进程存放数据

3、Node节点,一个CPU对应着一个Node,一个Node包括一个Zone_DMA、 ZONE_NORMAL、ZONE_HIGHMEM。

同时当一个CPU对应的内存用光后,可以申请其他CPU对应的内存。

物理内存的分配

Linux将内存分配分为两种:

1、大内存

大内存 利用伙伴系统 分配

伙伴系统的做法是将ZONE中的 Page 分组,然后组装为多个链表。

链表中存放的是 页块 的集合

页块对应着有不同的大小,分别为 1、2、4、8 … 1024个页。

当请求(2i-1 ,2i]大小的 page 的时候,会直接请求2i 个页, 如果对应的链表中有对应的页块,就直接分配。如果对应的链表没有,就往上找 2i+1,如果2i+1存在,就将其分为 2 个 2i 页块,将其中1个2i加入到对应的链表中,将另外一个分配出去。

例如,要请求一个 128 个页的页块时,先检查 128 个页的页块链表是否有空闲块。如果没有,则查 256 个

的页块链表;如果有空闲块的话,则将 256 个页的页块分成两份,一份使用,一份插入 128 个页的页块链表中。如果还是没有,就查 512 个页的页块链表;如果有的话,就分裂为 128、128、256 三个页块,一个 128 的使用,剩余两个插入对应页块链表。

2、小内存分配

小内存分配利用slub 分配,比如对象等数据
slub 就是 将几个页单独拎出来 作为缓存,里面维护了链表。每次直接从链表中获取对应的内存,用完之后也不用清空,就直接挂到链表上,然后等待下次利用。

2、如何组织虚拟地址

虚拟地址对应的是虚拟空间,虚拟空间只不过是一个虚拟地址的集合,用来映射物理内存。

虚拟空间分为 用户态 和 内核态 。

32位系统中 将虚拟空间按照 1:3的比例分配给 内核态 和 用户态

64位系统中 分别给 内核态 和 用户态 分配了 128T。

用户态结构

每个进程 都会 对应一个 用户态虚拟空间, 里面存放了 Text(代码)的内存虚拟地址范围、 Data(数据)的内存虚拟地址范围、BSS(全局变量)的内存虚拟地址范围、堆的虚拟地址范围、栈的虚拟地址范围,以及mmap 内存映射区。

学习直通车:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈

其中mmap 用于申请动态内存的时候的映射,堆和栈都是动态变化的。

一个进程对应的用户态中的 各个方面的虚拟地址信息都通过一个struct 来存储在内存中,当创建进程的时候会为其分配内存存储对应的虚拟地址信息

内核态结构

Linux中的内核程序 共用一个 内核态虚拟空间。其中分为了以下几部分:

1、直接映射区

896M,内核空间直接映射到对应的ZONE_DMA和ZONE_NORMAL中。为什么叫做直接映射呢? 逻辑地址 直接 减去对应的差值就可以得到对应的物理地址。固定死了。

2、动态映射

为什么要引入动态映射呢?
因为所有物理内存的分配都需要内核程序进行申请,用户进程没有这个权限。所以内核空间一定要能映射到所有的物理内存地址。

那么如果都采用直接映射的话,1G大小逻辑地址的内核空间只能映射1G大小的物理内存。

所以引入了动态映射,动态映射就是 内核空间的逻辑地址可以映射到 物理内存中的ZONE_HIGHMEM(高端内存)中的任何一个地址,并且在对应的物理内存使用完之后,可以再映射其他物理内存地址。

动态映射分为三种

1、动态内存映射: 使用完对应的物理内存后,就可以映射其他物理内存了。

2、永久内存映射: 一个虚拟地址只能映射一个物理地址。如果需要映射其他物理地址,需要解绑。

3、固定内存映射: 只能被某些特定的函数来调用引用物理地址。

动态内存映射和直接映射的区别

动态映射和直接映射的区别就是逻辑地址到物理地址的转化规则。

直接映射

直接映射的规则是死的,一个逻辑地址对应的物理地址是固定的。通过逻辑地址加或者减去一个数,就可以得到对应的物理地址。

动态映射

动态映射是动态的绑定,每个逻辑地址对应的物理地址是动态的,通过页表进行查询

用户空间映射:

用户空间采用动态映射,每个虚拟地址可以被映射到一个物理地址,映射到ZONE_HIGHMEM。

为什么用户空间不采用直接映射呢?

因为物理内存是多个进程所有的,每个进程都有一个用户空间。如果采用直接映射的话,对应的物理地址是会冲突的。其用户空间的逻辑地址大小都为3G,所以存在逻辑地址相同,但是对应的物理地址不同。需要通过页表来转化,一个进程会对应一个页表。

3、如何将虚拟地址映射到物理内存

虚拟地址通过 页表 将 虚拟地址 转化为 物理地址

每个进程都对应着一个页表

内核只有一个页表

虚拟空间 和 物理内存 都按照 4k 来分页,一个虚拟空间中的页 和 物理内存中页 是 一一对应的。

页表映射

如上图所示,将虚拟地址中的页号 通过页表转化为 对应的物理页号,然后通过页内偏移量 就可以得到对应的 物理地址了。

但是 1个进程就需要一个页表,一个4G的内存条,就需要1M个页表记录来描述,假如 1 个 页表记录需要 4个字节,那么就需要 4MB。而且页表记录是通过下标来对应的,通过虚拟页号来乘以对应的页表项大小来计算得到对应的地址的。

所以Linux将 4M 分为 1K个 4K, 一个4K对应着一个page,用来存储对应的真正的页表记录。将 1K 个 page 分开存放,就不要求连续的4M了。

如果将4M 分成 1K 个离散的 page的话,怎么虚拟地址对应的页表号呢?

利用指针,存储1K个地址,分别指向这1K个page, 地址的大小为4个字节,也就是32位,完全可以表示整个内存的地址范围。

1K * 4个字节,正好是一个page 4k,所以 也就是利用 1个 page来存储对应的页表记录索引。

所以 我们的虚拟地址寻找过程如下:
1、找到对应的页表记录索引位置,因为有1K个索引,所以用10位就可以表示了

2、通过索引可以找到对应的真正的页表地址,对应的有1K个页表记录,所以用10位就可以表示了

3、1个页有4K,通过12位就可以表示其页内偏移量了。

所以虚拟地址被分为了三部分
1、 10位 表示索引偏移
2、 10位 表示页表记录偏移
3、 12位 表示页内偏移

虽然这种方式增加了索引项,进一步增加了内存,但是减少了连续内存的使用,通过离散的内存就可以存储页表。

这是对于32位系统,64位采用了5级页表

映射流程图

用户态申请内存时,只会申请对应的虚拟地址,不会直接为其分配物理内存,而是等到真正访问内存的时候,产生缺页中断,然后内核才会为其分配,然后为其建立映射,也就是建立对应的页表项。

TLB

TLB就是一个缓存,放在CPU中。用来将虚拟地址和对应的物理地址进行缓存。
当查询对应的物理地址的时候,首先查询TLB,如果TLB中存在对应的记录,就直接返回。如果不存在,就再去查询页表。

虚拟内存

虚拟内存 指的是 将硬盘中划出一段 swap分区 当作 虚拟的内存,用来存放内存中暂时用不到的内存页,等到需要的时候再从 swap 分区中 将对应的内存页调入到 内存中。 硬盘此时相当于一个虚拟的内存。

从逻辑上能够运行更大内存的程序,因为程序运行的时候并不需要把所有数据都加载到内存中,只需要将当前运行必要的相关程序和数据加载到内存中就可以了,当需要其他数据和程序的时候,再将其调入。

相较于真正的内存加载,虚拟内存需要将数据在内存和磁盘中不断切换,这是一个耗时的操作,所以速度比不上真正的内存加载。

总结

虚拟空间 和 物理内存 都分为 内核空间 和 用户空间。

虚拟地址需要通过页表转化为物理地址,然后才能访问。

用户虚拟空间 只能映射 物理内存中的用户内存,无法映射到物理内存中的内核内存,也就是说,用户进程只能操作用户内存。

内核空间 只能被 内核 申请使用,用户进程只能操作用户空间的物理内存和虚拟空间。

当用户进程 调用系统调用的时候,会将其对应的代码和数据运行在内核空间中。

所以当调用 内核空间 读取文件或者网络数据的时候,首先会将数据拷贝到内存空间,然后在将数据从内核空间拷贝到用户空间。因为 用户进程不能访问内核空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/37128.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows位图绘制(显示位图资源)LoadBitmap、CreateCompatibleDC、BitBlt、StretchBlt

位图绘制 位图相关 光栅图形-记录图像中每一点的颜色等信息。 矢量图形-记录图像算法、绘图指令等。 HBITMAP-位图句柄 位图的适用 1.在资源中添加位图资源(在vs中点鼠标增加) 2.在资源中加载位图LoadBitmap 3.创建一个与当前DC相匹配的DC(内…

Js逆向教程-13浏览器和JS的关系/伪造浏览器环境 )

作者:虚坏叔叔 博客:https://xuhss.com 早餐店不会开到晚上,想吃的人早就来了!😄 Js逆向教程-13浏览器和JS的关系/伪造浏览器环境 ) 一、浏览器必然包含几个部分: 显示区域、输入网址、刷新按钮DOMBOM运行…

计算机网络笔记【面试】

计算机网络笔记【面试】前言推荐计算机网络笔记二、基础篇三、HTTP篇四、TCP 篇4.1 TCP 三次握手与四次挥手面试题什么是 TCP ?UDP 和 TCP 有什么区别呢?分别的应用场景是?TCP 连接建立TCP 三次握手过程是怎样的?为什么是三次握手…

Aspose.Slides 21.11.0 For .NET Crack

适用于 .NET 的 Aspose.Slides 用于 PowerPoint 文件格式的 .NET API 在 .NET C# 中读取、写入、修改、合并、克隆、保护和转换 PowerPoint 和 OpenOffice 演示文稿,无需任何外部软件。 Aspose.Slides for .NET 是一个用于 PowerPoint 和 OpenOffice 格式的演示文稿…

Linux Mint 的更新管理器现在支持 Flatpak

导读Linux Mint 的更新管理器变得更有用了! Linux Mint 的更新管理器是该发行版的一个重要组成部分,它使新用户可以获得更为方便简易的体验。 最近的一次更新 Linux Mint 21 推出了许多改进,包括更新管理器对 Flatpak 的支持。 你只需要更新…

【每周CV论文推荐】初学模型蒸馏值得阅读的文章

欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。模型蒸馏是非常重要的模型压缩方法,在学术界研究非常广泛,本次我们来简…

HTML5期末考核大作业网站——卫生与健康HTML+CSS+JavaScript

🎀 精彩专栏推荐👇🏻👇🏻👇🏻 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业…

SpringBoot SpringBoot 原理篇 1 自动配置 1.14 自动配置思想

SpringBoot 【黑马程序员SpringBoot2全套视频教程,springboot零基础到项目实战(spring boot2完整版)】 SpringBoot 原理篇 文章目录SpringBootSpringBoot 原理篇1 自动配置1.14 自动配置思想1.14.1 自动配置原理1 自动配置 1.14 自动配置思…

LeetCode_dijkstra 算法_困难_882.细分图中的可到达节点

目录1.题目2.思路3.代码实现(Java)1.题目 给你一个无向图(原始图),图中有 n 个节点,编号从 0 到 n - 1。你决定将图中的每条边细分为一条节点链,每条边之间的新节点数各不相同。 图用由边组成…

使用 Next.js 搭建 Monorepo 组件库文档

文章为稀土掘金技术社区首发签约文章,14 天内禁止转载,14 天后未获授权禁止转载,侵权必究! 阅读本文你将: 使用 pnpm 搭建一个 Monorepo 组件库使用 Next.js 开发一个组件库文档changesets 来管理包的 version 和生成…

Linux进程总结详解(上——初识)

Linux进程 文章目录Linux进程前言——先从硬件和软件谈起一、冯诺依曼体系结构二、操作系统概念一、进程介绍概念进程控制块查看进程通过系统创建进程二、进程状态1.内核代码如下:总结前言——先从硬件和软件谈起 一、冯诺依曼体系结构 定义:数学家冯诺…

【数据结构】二叉树的遍历

目录☀️二叉树的构建☀️二叉树的遍历🌻前序遍历🌻中序遍历🌻后序遍历☀️完整代码展示☀️二叉树的构建 便于理解二叉树的遍历,这里我们手动简单构建一个二叉树,当然,此处二叉树的构建并不是真正二叉树的…

C++类与对象(一)

目录 一、面向过程和面向对象认识 二、类的引入 三、类的定义 类的两种定义方式: 四、类的访问限定符及封装 4.1 访问限定符 4.2 封装 五、类的作用域 六、类的实例化 七、类对象模型 7.1 如何计算类对象的大小​​​​​ 7.2 类对象的存储方式 7.3 结…

SpringBoot+Mybaits搭建通用管理系统实例十一:数据缓存功能实现

一、本章内容 使用ehcache实现系统缓存功能,并配置实现mybatis的二级缓存,自定义分页缓存的key,识别实体类型,并根据实体属性的配置,组合生成key值用于标识缓存数据。 完整课程地址二、开发视频 SpringBoot+Mybaits搭建通用管理系统实例三:缓存管理功能实现 三、缓存配置 …

滚动吧,数字

朋友有个需求关于金币滚动效果,网上也有很多教程;但多不太符合他的需求,所有利用空余时间帮他做了一个通用组件。 效果图如下: 1、按照次数和速度进行,对应的滚动效果。 2、缓动效果可以根据自己的情况进行修改。 项目地址&#x…

windows安装VMware虚拟机(附带CentOS7部署)

软件下载 链接:https://pan.baidu.com/s/1Vw2Bilf9uf-EYR6_MR86aA?pwdd2qr 提取码:d2qr VMware安装 通你上述链接下载VMware安装包,没有特别选项,选安装位置无脑下一步安装,安装完成后会提示你输入激活码&#xf…

Java中的OpenCV-图像处理

我们将在本文中介绍以下高级图像处理操作:Canny 边缘检测轮廓和形状识别Canny 边缘检测:Canny 边缘检测是一种流行的边缘检测算法。它是由 John F. Canny 在 1986 年开发的。它是一个多阶段算法,我们将按如下方式经历每个阶段:噪声…

Java与GitLab OpenAPI交互

通过Gitlab Open api代码来操作代码的合并及关闭&#xff0c;项目的模板生成........ 方式一&#xff1a; 使用java-gitlab-api(推荐) 接口文档Java Gitlab API Documentation <dependency> <groupId>org.gitlab</groupId> <art…

49 多个 classloader 加载的同类限定名的Class 在 jhat 中显示不全

前言 呵呵 这是在之前 排查一个 flink 的相关问题的时候 发现的一个问题 flink 默认的 job 隔离是基于 Classloader 来进行隔离的 直到 最近才有时间来看一下 这个问题的原因, 究其代码 也还是比较容易找到 大致记录一下 以下内容, 截图 基于 jdk8 测试用例 /*** …

要闻 | 人大金仓重磅亮相2022南京软博会

“软件赋能 数智转型”&#xff0c;2022中国&#xff08;南京&#xff09;国际软件产品和信息服务交易博览会&#xff08;下称“南京软博会”&#xff09;于11月23至25日顺利举行。人大金仓重磅亮相本次展会&#xff0c;并受邀出席同期召开的2022中国&#xff08;南京&#xff…