LabVIEW输血袋字符智能检测系统

news2025/7/21 18:55:09

针对医疗行业输血袋字符检测需求,基于 LabVIEW 图形化开发平台与基恩士(KEYENCE)机器视觉硬件,构建高精度、高可靠性的字符在线识别系统。通过选用基恩士工业相机、光源及 NI 数据采集设备等硬件,结合 LabVIEW 强大的图像处理与算法集成能力,实现输血袋字符的自动化检测、识别与缺陷反馈。方案详细阐述硬件选型依据、软件架构设计及开发实践,凸显 LabVIEW 在机器视觉领域的快速开发与复杂算法实现能力。

应用场景

适用于医疗耗材生产企业的输血袋生产线,核心检测场景包括:

  • 字符完整性检测:识别输血袋编号是否存在漏印、重印(如 “血袋编号:CN20230530-001” 的唯一性校验)。

  • 字符清晰度检测:检测字符边缘模糊、墨点缺陷等(如字体像素对比度<200 的不合格品剔除)。

  • 字符倾斜校正:对传输过程中歪斜的血袋字符进行角度补偿(如倾斜角度>5° 时自动校正)。

硬件选型

模块

品牌 / 型号

核心优势

应用价值

工业相机

基恩士 CV-5000

- 500 万像素全局快门,帧率  120fps
  - 内置 AI 边缘计算功能
  - 防护等级 IP67

高速抓拍运动中的输血袋(生产线速度≤50 件 / 分钟),支持背光、前光多模式照明,适应透明 / 半透明材质检测

智能光源

基恩士 LV-ER150

- 环形 LED 光源,色温 5500K±500
  - 光强可调(0-100% 连续输出)

消除血袋表面反光干扰,增强字符与背景对比度(如编号区域灰度差提升至 150 以上)

数据采集

NI USB-6366

- 支持 Camera Link 接口,1.25MS/s 采样率
  - 同步触发功能

实时采集相机原始图像数据,与生产线 PLC(如西门子 S7-1200)同步触发,确保检测位置精度 ±1mm

运动控制

基恩士 KV-X1000PLC

- 响应时间<1ms,支持 EtherCAT 总线
  - 内置视觉专用指令集

控制传送带启停、不良品剔除机构(如气动推杆),与视觉系统通信延迟<5ms,实现 “检测 - 剔除” 闭环

上位机

研华 UNO-2483G

- 无风扇嵌入式设计,支持 24 小时连续运行
  - 预装 LabVIEW 2022 开发环境

运行 LabVIEW 视觉算法,实时显示检测结果(如合格 / 不合格指示灯),存储检测日志(支持追溯 3 年数据)

  1. 视觉检测专业性:基恩士 CV-5000 内置专利的 “图案匹配” 算法,字符识别率高达 99.5%,且支持 ROI(感兴趣区域)动态配置,可快速适应不同规格血袋编号检测。

  2. 环境适应性:IP67 防护等级相机与抗干扰光源适应医疗车间的潮湿、粉尘环境;光源色温与血袋材料(如 PVC)光谱特性匹配,减少颜色失真。

  3. 系统兼容性:NI 数据采集卡与基恩士相机通过标准协议通信,LabVIEW 原生支持基恩士视觉库(如 GVAPI),无需二次开发驱动,开发效率提升 40%。

四、软件架构设

 

功能实现

  1. 图像预处理流水线

    • 灰度化与去噪:使用 LabVIEW “图像灰度转换” 与 “中值滤波” 函数,消除血袋表面纹理噪声(如薄膜褶皱干扰),提升字符区域信噪比。

    • 直方图均衡化:通过 LabVIEW “直方图统计” 与 “灰度拉伸” 函数,将字符灰度范围扩展至 [50, 200],增强对比度。

    • 倾斜校正:基于 LabVIEW “霍夫变换” 检测字符边界线,计算倾斜角度(精度 ±0.1°),调用 “图像旋转” 函数自动校正。

  2. 字符识别算法

    • 定位与分割:采用 “投影法” 确定字符行区域,结合 “垂直投影” 分割单个字符(如 “CN20230530-001” 分割为 13 个独立字符)。

    • BP      神经网络识别

      • 训练数据:采集 10 万张标准字符图像(含数字 0-9、字母 A-Z、特殊符号 “-”),按 7:3 比例划分训练集与测试集。

      • 网络结构:输入层 784 节点(28×28 像素图像),隐藏层 128 节点(ReLU 激活函数),输出层 37 节点(36 个字符 + 1 个背景类)。

      • 识别优化:通过 LabVIEW “神经网络训练器” 工具,采用 Adam 优化算法,迭代 500 次后识别准确率达 99.2%。

  1. 缺陷反馈与追溯

    • 实时报警:当检测到重印、模糊等缺陷时,LabVIEW 通过 TCP 协议向 PLC 发送信号,触发剔除机构(响应时间<50ms),并在界面高亮显示缺陷类型。

    • 数据追溯:检测结果(含图像快照、时间戳、缺陷类型)存入 SQL Server 数据库,支持按 “血袋批次”“检测时间” 等维度查询,生成 PDF 格式检测报告。

架构优势

维度

本方案架构

传统架构(如 C+++OpenCV)

开发周期

2 周(基于 LabVIEW 视觉模板)

6 周(需从零开发算法与界面)

算法迭代

图形化调整神经网络参数,支持热部署

需重新编译代码,停机部署

维护成本

模块化设计,单个功能模块替换成本低

代码耦合度高,修改易引发连锁问题

扩展能力

直接调用 LabVIEW 数学库(如 FFT、小波变换)

需手动集成第三方库,兼容性风险高

问题与解决

1. 透明材质反光干扰问题

  • 问题描述:血袋薄膜表面反光导致字符区域灰度值波动>30,传统阈值分割失效。

  • 解决方案

    • 硬件层:采用基恩士 LV-ER150 环形偏振光源,通过偏振片消除镜面反射,使反光区域灰度波动降至<10。

    • 软件层:在 LabVIEW 中使用 “自适应阈值分割” 算法,根据局部区域灰度均值动态调整阈值(公式:阈值 = 均值 + 0.5× 标准差),确保字符分割准确率>98%。

2. 多规格血袋快速切换问题

  • 问题描述:生产线切换血袋型号时(如从 “成人型” 转为 “儿童型”),需重新调整检测 ROI 与字符模板,传统方案耗时>1 小时。

  • 解决方案

    • 设计 “产品参数配置界面”:在 LabVIEW 中创建可编辑的 XML 配置文件,包含 ROI 坐标、字符模板、检测规则等参数,支持一键加载不同产品配置(切换时间<5 分钟)。

    • 动态模板匹配:通过 LabVIEW “模式匹配” 函数,自动识别血袋类型(如通过左上角 LOGO 匹配),并调用对应的检测参数,实现 “来料即识别,识别即检测”。

3. 神经网络模型部署效率问题

  • 问题描述:训练好的 BP 神经网络模型在工业 PC 上推理速度<20ms / 字符,无法满足生产线 50 件 / 分钟的检测速度(需<12ms / 字符)。

  • 解决方案

    • 模型轻量化:将隐藏层节点从 256 个减少至 128 个,引入 Dropout 层防止过拟合,推理速度提升至 8ms / 字符,准确率仅下降 0.3%。

    • 并行计算优化:利用 LabVIEW “GPU 加速” 模块,将卷积运算分配至显卡处理,整体检测速度提升至 5ms / 字符,完全满足实时性要求。

LabVIEW能力体现

  1. 视觉算法快速验证:通过 LabVIEW 视觉开发模块(Vision Development Module),无需编写底层代码即可实现图像滤波、边缘检测等功能,算法验证周期缩短 70%。

  2. 硬件无缝集成:原生支持基恩士、NI 等品牌硬件驱动,通过 “视觉采集助手” 向导可在 10 分钟内完成相机参数配置与图像采集流程搭建。

  3. 复杂系统调试:提供 “实时图像预览”“中间结果监控” 等工具(如显示直方图、分割掩码),便于工程师快速定位算法缺陷(如字符分割错误时可追溯至预处理阶段)。

系统总结

本方案通过“LabVIEW + 基恩士视觉硬件” 的组合,构建了医疗行业高效的输血袋字符检测系统。LabVIEW 的图形化开发模式与基恩士硬件的专业性结合,显著降低了机器视觉系统的开发门槛,同时满足了医疗场景对高精度、高可靠性的需求。该方案已在某大型医疗耗材企业落地,检测效率提升 300%,人工误检率从 5% 降至 0.2%,为工业视觉检测的智能化升级提供了典型示范。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2395905.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

理解频域滤波

1 频域滤波基础 对一幅数字图像,基本的频率滤波操作包括: 1)将图像变换到频率域; 2)根据需要修改频率域数值; 3)反变换到图像域。 使用公式表达为 , H(u,v) 为滤波器(滤…

Telerik生态整合:Kendo UI for Angular组件在WinForms应用中的深度嵌入(一)

Telerik DevCraft包含一个完整的产品栈来构建您下一个Web、移动和桌面应用程序。它使用HTML和每个.NET平台的UI库,加快开发速度。Telerik DevCraft提供完整的工具箱,用于构建现代和面向未来的业务应用程序,目前提供UI for ASP.NET MVC、Kendo…

古老的传说(Player、Stage)是否还能在蓝桥云课ROS中重现-250601(失败)

古老的传说是否还能在蓝桥云课ROS中重现-250601 经典复现何其难,百分之二就凉凉! 古老的传说 那是很久很久以前的故事……上个世纪的一个机器人项目 Player、Stage这个项目最早起源于1999年,由美国南加州大学机器人研究实验室开发&#xff0…

InfluxQL 数据分析实战:聚合、过滤与关联查询全解析

InfluxQL 作为时序数据库的专用查询语言,在处理时间序列数据时展现出独特优势。本文深入探讨 聚合计算、数据过滤和跨测量关联 三大核心操作,通过真实代码示例展示如何从海量时序数据中提取关键洞察。文中涵盖从基础平均值计算到复杂多维度分析的完整流程…

Qt font + ToolTip + focusPolicy + styleSheet属性(5)

文章目录 font属性API接口直接在Qt Designer编辑图形化界面通过纯代码的方式修改文字属性 ToolTip属性API接口代码演示 focusPolicy属性概念理解API接口通过编辑图形化界面演示 styleSheet属性概念理解通过编辑图形化界面展示代码 图形化界面的方式展示(夜间/日间模…

十三: 神经网络的学习

这里所说的“学习”是指从训练数据中自动获取最优权重参数的过程。为了使神经网络能进行学习,将导入损失函数这一指标。而学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。为了找出尽可能小的损失函数的值,我们将介绍利…

LeetCode 高频 SQL 50 题(基础版)之 【聚合函数】部分

题目:620. 有趣的电影 题解: select * from cinema where description !boring and id%21 order by rating desc题目:1251. 平均售价 题解: select p.product_id product_id,round(ifnull(sum(p.price*u.units)/sum(u.units),0)…

【AI学习】检索增强生成(Retrieval Augmented Generation,RAG)

1,介绍 出自论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》,RAG是权宜之计,通过RAG将问题简单化、精简化、剔除噪声,让LLM更容易理解、生成内容。RAG:检索增强技术检索生成(重…

低成本高效图像生成:GPUGeek和ComfyUI的强强联合

一、时代背景 在如今的数字化时代,图像生成技术正不断发展和演变,尤其是在人工智能领域。无论是游戏开发、虚拟现实,还是设计创意,图像生成已成为许多应用的核心技术之一。然而,随着图像质量需求的提升,生成…

《操作系统真相还原》——进入内核

ELF 按书上的操作来,在现代操作平台编译链接默认生成elf64 格式的文件, 很显然程序头位置发生变化,因为定义elf 结构的类型中有64位,所以我们需要将编译链接出32位格式的 gcc -m32 -c -o main.o main.c ld -m elf_i386 main.o …

【QQ音乐】sign签名| data参数 | AES-GCM加密 | webpack(上)

1.目标 网址:https://y.qq.com/n/ryqq/toplist/26 切换榜单出现请求,可以看到sign和data是加密的 2.逆向分析 搜索sign: 可以看到sign P(n.data),而n.data就是请求的加密data参数 data {"comm":{"cv":4747474,&qu…

【STM32】按键控制LED 光敏传感器控制蜂鸣器

🔎【博主简介】🔎 🏅CSDN博客专家 🏅2021年博客之星物联网与嵌入式开发TOP5 🏅2022年博客之星物联网与嵌入式开发TOP4 🏅2021年2022年C站百大博主 🏅华为云开发…

M-OFDM模糊函数原理及仿真

文章目录 前言一、M序列二、M-OFDM 信号1、OFDM 信号表达式2、模糊函数表达式 三、MATLAB 仿真1、MATLAB 核心源码2、仿真结果①、m-OFDM 模糊函数②、m-OFDM 距离分辨率③、m-OFDM 速度分辨率④、m-OFDM 等高线图 四、资源自取 前言 本文进行 M-OFDM 的原理讲解及仿真&#x…

【MySQL】MVCC与Read View

目录 一、数据库并发的三种场景 二、读写场景的MVCC (一)表中的三个隐藏字段 (二)undo 日志 (三)模拟MVCC (四)Read View (五)当前读和快照读 三、RC和…

相机--双目立体相机

教程 链接1 教程汇总 立体匹配算法基础概念 视频讲解摄像机标定和双目立体原理 两个镜头。 双目相机也叫立体相机--Stereo Camera,属于深度相机。 作用 1,获取图像特征; 2,获取图像深度信息; 原理 原理和标定 …

多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现

多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现 目录 多目标粒子群优化算法(MOPSO),用于解决无人机三维路径规划问题,Matlab代码实现效果一览基本介绍…

工厂模式 vs 策略模式:设计模式中的 “创建者” 与 “决策者”

在日常工作里,需求变动或者新增功能是再常见不过的事情了。而面对这种情况时,那些耦合度较高的代码就会给我们带来不少麻烦,因为在这样的代码基础上添加新需求往往困难重重。为了保证系统的稳定性,我们在添加新需求时,…

37. Sudoku Solver

题目描述 37. Sudoku Solver 回溯 class Solution {vector<vector<bool>> row_used;vector<vector<bool>> col_used;vector<vector<bool>> box_used;public:void solveSudoku(vector<vector<char>>& board) {row_used.r…

RV1126-OPENCV 图像叠加

一.功能介绍 图像叠加&#xff1a;就是在一张图片上放上自己想要的图片&#xff0c;如LOGO&#xff0c;时间等。有点像之前提到的OSD原理一样。例如&#xff1a;下图一张图片&#xff0c;在左上角增加其他图片。 二.OPENCV中图像叠加常用的API 1. copyTo方法进行图像叠加 原理…

修改 vscode 左侧导航栏的文字大小 (更新版)

1. 起因&#xff0c; 目的: 问题&#xff1a; vscode 左侧的文字太小了&#xff01;&#xff01;&#xff01;我最火的一篇文章&#xff0c;写的就是这个问题。 看来这个问题&#xff0c;是很广泛的一个痛点。我最近更新了 vscode&#xff0c; 这个问题又出现了。再来搞一下。…