RV1126-OPENCV 图像叠加

news2025/6/4 7:43:19

一.功能介绍

        图像叠加:就是在一张图片上放上自己想要的图片,如LOGO,时间等。有点像之前提到的OSD原理一样。例如:下图一张图片,在左上角增加其他图片。

 二.OPENCV中图像叠加常用的API

1. copyTo方法进行图像叠加

  • 原理:在图片1中选取一个 Rect 的兴趣区域(也就是自己想要放哪,放多大),然后把图2放在兴趣区域,最后输出图片1。注意:这个兴趣区域要和图2一样大小。例如:图1为原图,图2为杰伦。

  •  API: void copyTo( OutputArray m ) const
  •  代码实现:
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;


int main()
{
    //读取图像
    Mat src_pic = imread("frame1.jpg"); //src_pic是原图像数据
    Mat logo_pic = imread("mat_demo.jpg");//logo_pic是LOGO图像的数据

    //创建兴趣区域
    Mat logo_pic_roi = src_pic(Rect(0,0,logo_pic.cols, logo_pic.rows)); //在src_pic上创建一个矩形区域,大小与logo_pic相同

    //将logo_pic复制到logo_pic_roi中
    logo_pic.copyTo(logo_pic_roi);

    //显示图像
    imwrite("result.jpg", src_pic);

    return 0;
}

2. addWeighted方法对图像数据进行图像叠加

  • 原理:和copyTo一样,只不过多了一个加权操作(加权:1 = 图片1的权重+图片2的权重,谁的权重高,谁更清楚,更清晰),然后输出新图片。
  • API:  addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, intdtype = -1);

第一个参数:src1,第一个输入的图像
第二个参数:alpha,第一个输入图像的权重值,是一个双精度浮点数
第三个参数:src2,第二个输入图像
第四个参数:beta,第二个输入图像的权重,是一个双精度浮点数
第五个参数:gamma 加权和的可选标量,通常是一个双精度浮点数,默认为 0
第六个参数:dst 输出图像,这里是存储加权图像的结果
第七个参数:输出图像的类型,默认是-1,表示的是输入图像和输出图像类型一致

上图是src1权重为0.8,下图是src1权重为0.3效果:

  • addWeighted的两种情况:1.两张图片大小不一样:就是先在图片1上面创建感兴趣区域,然后融合感兴趣区域和图片2,最后输出图片1;2.两张图片一样大:直接融合两张图片,然后生成新图片。
  • 代码实现: 
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main(int argc, char * argv[])
{

    Mat src1 = imread(argv[1]);  //src1原图像的数据
    Mat src2 = imread(argv[2]); //src2是LOGO图像的数据

    //判断src1大小和src2大小是否相同,若不同则和copyTo函数一样操作
    if(src1.size != src2.size)
    {
        //在src1中创建一个矩形区域(兴趣区域)和src2大小相同的图像
        Mat image_roi = src1(Rect(0, 0, src2.cols, src2.rows));

        //设置权重
        double alpha = 0.8;
        double beta = 1 - alpha;
        int gamma = 0;

        //将src2和src1的矩形区域(兴趣区域)进行融合,并将结果存入image_roi中
        addWeighted(image_roi, alpha, src2, beta, gamma, image_roi);

        imwrite("addweighted3.jpg", src1);
    }
    else
    {
        //src1和src2大小相同,直接进行加权操作
        double alpha = 0.3;
        double beta = 1 - alpha;
        int gamma = 0;

        Mat dst;
        addWeighted(src1, alpha, src2, beta, gamma,dst);
        imwrite("addweighted2.jpg", dst);
    }
    
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2395872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修改 vscode 左侧导航栏的文字大小 (更新版)

1. 起因&#xff0c; 目的: 问题&#xff1a; vscode 左侧的文字太小了&#xff01;&#xff01;&#xff01;我最火的一篇文章&#xff0c;写的就是这个问题。 看来这个问题&#xff0c;是很广泛的一个痛点。我最近更新了 vscode&#xff0c; 这个问题又出现了。再来搞一下。…

云原生 Cloud Native Build (CNB)使用初体验

云原生 Cloud Native Build&#xff08;CNB&#xff09;使用初体验 引言 当“一切皆可云”成为趋势&#xff0c;传统开发环境正被云原生工具重塑。腾讯云CNB&#xff08;Cloud Native Build&#xff09;作为一站式开发平台&#xff0c;试图解决多环境协作难题。 本文将分享c…

格式工厂 FormatFactory v5.20.便携版 ——多功能媒体文件转换工具 长期更新

—————【下 载 地 址】——————— 【​本章下载一】&#xff1a;https://pan.xunlei.com/s/VORWF3Q7D0eCVV06LHbzheD-A1?pwdjikz# 【​本章下载二】&#xff1a;https://pan.quark.cn/s/8ee59ed83658 【百款黑科技】&#xff1a;https://ucnygalh6wle.feishu.cn/wiki/…

数据可视化--使用matplotlib绘制高级图表

目录 一、绘制等高线图 contour() 二、绘制矢量场流线图 streamplot() 三、绘制棉棒图 stem() 四、绘制哑铃图 五、绘制甘特图 六、绘制人口金字塔图 barh() 七、绘制漏斗图 简易版漏斗图 八、绘制桑基图 Sankey()---创建桑基图 add()---添加桑基图的选项 finish()…

如何做好一个决策:基于 Excel的决策树+敏感性分析应用

决策点: 开发新产品? (是 / 否) 因素 (如果是): 市场接受度 (高 / 中 / 低);概率: 高(0.3), 中(0.5), 低(0.2) 结果值 (NPV): 高(+$1M), 中(+$0.2M), 低(-$0.5M) 不开发成本/收益: $0 开发计算: EMV(市场接受度) = (0.3 * 1M) + (0.5 * 0.2M) + (0.2 * -0.5M) = $0.3M + $…

【模拟电子电路-工具使用】

模拟电子电路-工具使用 ■ 1. 模拟软件■ 1. circuit JS ■ 2. 万用表■ 3. 示波器■ 4.■ 5.■ 6.■ 7. ■ 1. 模拟软件 ■ 1. circuit JS ■ 2. 万用表 ■ 3. 示波器 ■ 4. ■ 5. ■ 6. ■ 7.

[ElasticSearch] ElasticSearch的初识与基本操作

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

搜索引擎2.0(based elasticsearch6.8)设计与实现细节(完整版)

1 简介 1.1 背景 《搜索引擎onesearch 1.0-设计与实现.docx》介绍了1.0特性&#xff0c;搜索schema&#xff0c;agg&#xff0c;表达式搜索映射&#xff0c;本文介绍onesearch 2.0 新特性, 参考第2节 规划特性与发布计划 1.2 关键词 文档 Document elasticsearch 一行数据称为…

Go 即时通讯系统:客户端与服务端 WebSocket 通信交互

客户端和服务端的交互 客户端与服务端建立连接 客户端&#xff1a;客户端通过浏览器或者其他应用程序发起一个 HTTP 请求到服务端的 /socket.io 路径。在请求中会携带用户的 UUID 作为参数&#xff08;通过 c.Query("user") 获取&#xff09;。 // router/socket.…

某航后缀混淆逆向与顶像风控分析

文章目录 1. 写在前面2. 接口分析3. 加密分析4. 风控分析 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致…

[Protobuf]常见数据类型以及使用注意事项

[Protobuf]常见数据类型以及使用注意事项 水墨不写bug 文章目录 一、基本数据类型1、字段2、字段的修饰规则 二、自定义数据类型1、message类型2、enum类型3、Any类型4、oneof类型5、map类型 三、小工具1.hexdump2.decode 四、注意事项 一、基本数据类型 protobuf 支持多种基础…

模拟实现线程池(线程数目为定值)和定时器

前言 昨天学习关于定时器的相关知识。今天花时间去模拟实现了一个定时器&#xff0c;同时也去模拟实现了一个线程池(线程数目为定值)。我感觉我收获了很多&#xff0c;对于线程的理解加深了。跟大家分享一下~ 线程池和定时器(这个是主要)的实现 代码 线程池 import java.ut…

数据结构之队列实验

引言 在计算机科学中&#xff0c;进制转换是基础但重要的操作。例如将一个十进制数转换为二进制或八进制表示时&#xff0c;我们通常使用“短除法”——即不断用目标进制去除当前数&#xff0c;记录余数&#xff0c;直到商为0为止。 这种方法得到的是低位先产生的结果&#x…

【Ubuntu】摸鱼技巧之虚拟机环境复制

前言 提示&#xff1a;所有的操作都需要关闭虚拟机 如何快速在其它电脑布置&#xff0c;linux环境&#xff0c;如果我们有一个环境直接拷贝就有时间摸鱼呀。 1.直接复制简单粗暴 不做赘述&#xff0c;如果不会复制&#xff0c;那么请右击鼠标压缩复制 2.克隆虚拟机 2.1 …

室内VR全景助力房产营销及装修

在当今的地产行业&#xff0c;VR全景已成为不可或缺的应用工具。从地产直播到楼市VR地图&#xff0c;从效果图到水电家装施工记录&#xff0c;整个地产行业的上下游生态中&#xff0c;云VR全景的身影无处不在。本文将探讨VR全景在房产营销及装修领域的应用&#xff0c;并介绍众…

jenkins集成gitlab实现自动构建

jenkins集成gitlab实现自动构建 前面我们已经部署了Jenkins和gitlab&#xff0c;本文介绍将二者结合使用 项目源码上传至gitee提供公网访问&#xff1a;https://gitee.com/ye-xiao-tian/my-webapp 1、创建一个群组和项目 2、添加ssh密钥 #生成密钥 [rootgitlab ~]# ssh-keyge…

Spring Boot微服务架构(八):开发之初就引入APM工具监控

使用 APM&#xff08;Application Performance Management&#xff09;工具监控 Spring Boot 应用&#xff0c;可以帮助开发者实时追踪性能瓶颈、分析调用链路、监控资源使用情况&#xff0c;并快速定位故障。以下是详细的步骤和常用工具的选择指南&#xff1a; ​​一、常用 A…

大规模真实场景 WiFi 感知基准数据集

一段话总结 本文提出CSI-Bench,首个大规模真实场景WiFi感知基准数据集,覆盖26个室内环境、35名用户、16种商用设备,包含461小时有效数据,支持跌倒检测、呼吸监测、定位、运动源识别等单任务及用户身份、活动、 proximity联合标注的多任务学习。通过标准化评估协议和基线模…

Python实现HPSO-TVAC优化算法优化支持向量机SVC分类模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在当今数据驱动的时代&#xff0c;支持向量机&#xff08;SVM&#xff09;作为一种经典的机器学习算法&#xff0c;…

ck-editor5的研究 (3):初步使用 CKEditor5 的事件系统和API

前言 在上一篇文章中—— ck-editor5的研究&#xff08;2&#xff09;&#xff1a;对 CKEditor5 进行设计&#xff0c;并封装成一个可用的 vue 组件 &#xff0c;我已经把 CKEditor5 封装成了一个通用vue组件&#xff0c;并且成功在nuxt中运行&#xff0c;并具备一定的通用性&…