彻底搞懂nodejs事件循环

news2025/7/19 19:11:45

nodejs是单线程执行的,同时它又是基于事件驱动的非阻塞IO编程模型。这就使得我们不用等待异步操作结果返回,就可以继续往下执行代码。当异步事件触发之后,就会通知主线程,主线程执行相应事件的回调。

以上是众所周知的内容。今天我们从源码入手,分析一下nodejs的事件循环机制。

nodejs架构

首先,我们先看下nodejs架构,下图所示:

如上图所示,nodejs自上而下分为

  • 用户代码 ( js 代码 )

用户代码即我们编写的应用程序代码、npm包、nodejs内置的js模块等,我们日常工作中的大部分时间都是编写这个层面的代码。

  • binding代码或者三方插件(js 或 C/C++ 代码)

胶水代码,能够让js调用C/C++的代码。可以将其理解为一个桥,桥这头是js,桥那头是C/C++,通过这个桥可以让js调用C/C++。
在nodejs里,胶水代码的主要作用是把nodejs底层实现的C/C++库暴露给js环境。
三方插件是我们自己实现的C/C++库,同时需要我们自己实现胶水代码,将js和C/C++进行桥接。

  • 底层库

nodejs的依赖库,包括大名鼎鼎的V8、libuv。
V8: 我们都知道,是google开发的一套高效javascript运行时,nodejs能够高效执行 js 代码的很大原因主要在它。
libuv:是用C语言实现的一套异步功能库,nodejs高效的异步编程模型很大程度上归功于libuv的实现,而libuv则是我们今天重点要分析的。
还有一些其他的依赖库
http-parser:负责解析http响应
openssl:加解密
c-ares:dns解析
npm:nodejs包管理器

关于nodejs不再过多介绍,大家可以自行查阅学习,接下来我们重点要分析的就是libuv。

libuv 架构

我们知道,nodejs实现异步机制的核心便是libuv,libuv承担着nodejs与文件、网络等异步任务的沟通桥梁,下面这张图让我们对libuv有个大概的印象:

这是libuv官网的一张图,很明显,nodejs的网络I/O、文件I/O、DNS操作、还有一些用户代码都是在 libuv 工作的。
既然谈到了异步,那么我们首先归纳下nodejs里的异步事件:

  • 非I/O:
    • 定时器(setTimeout,setInterval)
    • microtask(promise)
    • process.nextTick
    • setImmediate
    • DNS.lookup
  • I/O:
    • 网络I/O
    • 文件I/O
    • 一些DNS操作

参考nodejs进阶视频讲解:进入学习

网络I/O

对于网络I/O,各个平台的实现机制不一样,linux 是 epoll 模型,类 unix 是 kquene 、windows 下是高效的 IOCP 完成端口、SunOs 是 event ports,libuv 对这几种网络I/O模型进行了封装。

文件I/O、异步DNS操作

libuv内部还维护着一个默认4个线程的线程池,这些线程负责执行文件I/O操作、DNS操作、用户异步代码。当 js 层传递给 libuv 一个操作任务时,libuv 会把这个任务加到队列中。之后分两种情况:

  • 1、线程池中的线程都被占用的时候,队列中任务就要进行排队等待空闲线程。
  • 2、线程池中有可用线程时,从队列中取出这个任务执行,执行完毕后,线程归还到线程池,等待下个任务。同时以事件的方式通知event-loop,event-loop接收到事件执行该事件注册的回调函数。

当然,如果觉得4个线程不够用,可以在nodejs启动时,设置环境变量UV_THREADPOOL_SIZE来调整,出于系统性能考虑,libuv 规定可设置线程数不能超过128个。

nodejs源码

先简要介绍下nodejs的启动过程:

  • 1、调用platformInit方法 ,初始化 nodejs 的运行环境。
  • 2、调用 performance_node_start 方法,对 nodejs 进行性能统计。
  • 3、openssl设置的判断。
  • 4、调用v8_platform.Initialize,初始化 libuv 线程池。
  • 5、调用 V8::Initialize,初始化 V8 环境。
  • 6、创建一个nodejs运行实例。
  • 7、启动上一步创建好的实例。
  • 8、开始执行js文件,同步代码执行完毕后,进入事件循环。
  • 9、在没有任何可监听的事件时,销毁 nodejs 实例,程序执行完毕。

以上就是 nodejs 执行一个js文件的全过程。接下来着重介绍第八个步骤,事件循环。

我们看几处关键源码:

  • 1、core.c,事件循环运行的核心文件。
int uv_run(uv_loop_t* loop, uv_run_mode mode) {
  int timeout;
  int r;
  int ran_pending;
//判断事件循环是否存活。
  r = uv__loop_alive(loop);
  //如果没有存活,更新时间戳
  if (!r)
    uv__update_time(loop);
//如果事件循环存活,并且事件循环没有停止。
  while (r != 0 && loop->stop_flag == 0) {
    //更新当前时间戳
    uv__update_time(loop);
    //执行 timers 队列
    uv__run_timers(loop);
    //执行由于上个循环未执行完,并被延迟到这个循环的I/O 回调。
    ran_pending = uv__run_pending(loop); 
    //内部调用,用户不care,忽略
    uv__run_idle(loop); 
    //内部调用,用户不care,忽略
    uv__run_prepare(loop); 

    timeout = 0; 
    if ((mode == UV_RUN_ONCE && !ran_pending) || mode == UV_RUN_DEFAULT)
    //计算距离下一个timer到来的时间差。
      timeout = uv_backend_timeout(loop);
   //进入 轮询 阶段,该阶段轮询I/O事件,有则执行,无则阻塞,直到超出timeout的时间。
    uv__io_poll(loop, timeout);
    //进入check阶段,主要执行 setImmediate 回调。
    uv__run_check(loop);
    //进行close阶段,主要执行 **关闭** 事件
    uv__run_closing_handles(loop);

    if (mode == UV_RUN_ONCE) {

      //更新当前时间戳
      uv__update_time(loop);
      //再次执行timers回调。
      uv__run_timers(loop);
    }
    //判断当前事件循环是否存活。
    r = uv__loop_alive(loop); 
    if (mode == UV_RUN_ONCE || mode == UV_RUN_NOWAIT)
      break;
  }

  /* The if statement lets gcc compile it to a conditional store. Avoids   * dirtying a cache line.   */
  if (loop->stop_flag != 0)
    loop->stop_flag = 0;

  return r;
}
  • 2、timers 阶段,源码文件:timers.c
void uv__run_timers(uv_loop_t* loop) {
  struct heap_node* heap_node;
  uv_timer_t* handle;

  for (;;) {
  //取出定时器堆中超时时间最近的定时器句柄
    heap_node = heap_min((struct heap*) &loop->timer_heap);
    if (heap_node == NULL)
      break;

    handle = container_of(heap_node, uv_timer_t, heap_node);
    // 判断最近的一个定时器句柄的超时时间是否大于当前时间,如果大于当前时间,说明还未超时,跳出循环。
    if (handle->timeout > loop->time)
      break;
    // 停止最近的定时器句柄
    uv_timer_stop(handle);
    // 判断定时器句柄类型是否是repeat类型,如果是,重新创建一个定时器句柄。
    uv_timer_again(handle);
    //执行定时器句柄绑定的回调函数
    handle->timer_cb(handle);
  }
}
  • 3、 轮询阶段 源码,源码文件:kquene.c
void uv__io_poll(uv_loop_t* loop, int timeout) {
  /*一连串的变量初始化*/
  //判断是否有事件发生    
  if (loop->nfds == 0) {
    //判断观察者队列是否为空,如果为空,则返回
    assert(QUEUE_EMPTY(&loop->watcher_queue));
    return;
  }

  nevents = 0;
  // 观察者队列不为空
  while (!QUEUE_EMPTY(&loop->watcher_queue)) {
    /*    取出队列头的观察者对象    取出观察者对象感兴趣的事件并监听。    */
    ....省略一些代码
    w->events = w->pevents;
  }


  assert(timeout >= -1);
  //如果有超时时间,将当前时间赋给base变量
  base = loop->time;
  // 本轮执行监听事件的最大数量
  count = 48; /* Benchmarks suggest this gives the best throughput. */
  //进入监听循环
  for (;; nevents = 0) {
  // 有超时时间的话,初始化spec
    if (timeout != -1) {
      spec.tv_sec = timeout / 1000;
      spec.tv_nsec = (timeout % 1000) * 1000000;
    }

    if (pset != NULL)
      pthread_sigmask(SIG_BLOCK, pset, NULL);
    // 监听内核事件,当有事件到来时,即返回事件的数量。
    // timeout 为监听的超时时间,超时时间一到即返回。
    // 我们知道,timeout是传进来得下一个timers到来的时间差,所以,在timeout时间内,event-loop会一直阻塞在此处,直到超时时间到来或者有内核事件触发。
    nfds = kevent(loop->backend_fd,
                  events,
                  nevents,
                  events,
                  ARRAY_SIZE(events),
                  timeout == -1 ? NULL : &spec);

    if (pset != NULL)
      pthread_sigmask(SIG_UNBLOCK, pset, NULL);

    /* Update loop->time unconditionally. It's tempting to skip the update when     * timeout == 0 (i.e. non-blocking poll) but there is no guarantee that the     * operating system didn't reschedule our process while in the syscall.     */
    SAVE_ERRNO(uv__update_time(loop));
    //如果内核没有监听到可用事件,且本次监听有超时时间,则返回。
    if (nfds == 0) {
      assert(timeout != -1);
      return;
    }

    if (nfds == -1) {
      if (errno != EINTR)
        abort();

      if (timeout == 0)
        return;

      if (timeout == -1)
        continue;

      /* Interrupted by a signal. Update timeout and poll again. */
      goto update_timeout;
    }

    。。。
    //判断事件循环的观察者队列是否为空
    assert(loop->watchers != NULL);
    loop->watchers[loop->nwatchers] = (void*) events;
    loop->watchers[loop->nwatchers + 1] = (void*) (uintptr_t) nfds;
    // 循环处理内核返回的事件,执行事件绑定的回调函数
    for (i = 0; i < nfds; i++) {
        。。。。
    }

}

uv__io_poll阶段源码最长,逻辑最为复杂,可以做个概括,如下:
当js层代码注册的事件回调都没有返回的时候,事件循环会阻塞在poll阶段。看到这里,你可能会想了,会永远阻塞在此处吗?

1、首先呢,在poll阶段执行的时候,会传入一个timeout超时时间,该超时时间就是poll阶段的最大阻塞时间。
2、其次呢,在poll阶段,timeout时间未到的时候,如果有事件返回,就执行该事件注册的回调函数。timeout超时时间到了,则退出poll阶段,执行下一个阶段。

所以,我们不用担心事件循环会永远阻塞在poll阶段。

以上就是事件循环的两个核心阶段。限于篇幅,timers阶段的其他源码和setImmediateprocess.nextTick的涉及到的源码就不罗列了,感兴趣的童鞋可以看下源码。

最后,总结出事件循环的原理如下,以上你可以不care,记住下面的总结就好了。

事件循环原理

  • node 的初始化
    • 初始化 node 环境。
    • 执行输入代码。
    • 执行 process.nextTick 回调。
    • 执行 microtasks。
  • 进入 event-loop
    • 进入 timers 阶段
      • 检查 timer 队列是否有到期的 timer 回调,如果有,将到期的 timer 回调按照 timerId 升序执行。
      • 检查是否有 process.nextTick 任务,如果有,全部执行。
      • 检查是否有microtask,如果有,全部执行。
      • 退出该阶段。
    • 进入IO callbacks阶段。
      • 检查是否有 pending 的 I/O 回调。如果有,执行回调。如果没有,退出该阶段。
      • 检查是否有 process.nextTick 任务,如果有,全部执行。
      • 检查是否有microtask,如果有,全部执行。
      • 退出该阶段。
    • 进入 idle,prepare 阶段:
      • 这两个阶段与我们编程关系不大,暂且按下不表。
    • 进入 poll 阶段
      • 首先检查是否存在尚未完成的回调,如果存在,那么分两种情况。
        • 第一种情况:
          • 如果有可用回调(可用回调包含到期的定时器还有一些IO事件等),执行所有可用回调。
          • 检查是否有 process.nextTick 回调,如果有,全部执行。
          • 检查是否有 microtaks,如果有,全部执行。
          • 退出该阶段。
        • 第二种情况:
          • 如果没有可用回调。
          • 检查是否有 immediate 回调,如果有,退出 poll 阶段。如果没有,阻塞在此阶段,等待新的事件通知。
      • 如果不存在尚未完成的回调,退出poll阶段。
    • 进入 check 阶段。
      • 如果有immediate回调,则执行所有immediate回调。
      • 检查是否有 process.nextTick 回调,如果有,全部执行。
      • 检查是否有 microtaks,如果有,全部执行。
      • 退出 check 阶段
    • 进入 closing 阶段。
      • 如果有immediate回调,则执行所有immediate回调。
      • 检查是否有 process.nextTick 回调,如果有,全部执行。
      • 检查是否有 microtaks,如果有,全部执行。
      • 退出 closing 阶段
    • 检查是否有活跃的 handles(定时器、IO等事件句柄)。
      • 如果有,继续下一轮循环。
      • 如果没有,结束事件循环,退出程序。

细心的童鞋可以发现,在事件循环的每一个子阶段退出之前都会按顺序执行如下过程:

  • 检查是否有 process.nextTick 回调,如果有,全部执行。
  • 检查是否有 microtaks,如果有,全部执行。
  • 退出当前阶段。

记住这个规律哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/8066.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ASEMI整流桥D3KB100参数,D3KB100规格,D3KB100封装

编辑-Z ASEMI整流桥D3KB100参数&#xff1a; 型号&#xff1a;D3KB100 最大重复峰值反向电压&#xff08;VRRM&#xff09;&#xff1a;1000V RMS反向电压VR(RMS)&#xff1a;700 平均整流输出电流&#xff08;IO&#xff09;&#xff1a;3A 峰值正向浪涌电流&#xff08…

【论文阅读】时序动作检测系列论文精读(2019年)

文章目录1. BMN: Boundary-Matching Network for Temporal Action Proposal Generation论文目的——拟解决问题贡献——创新实现流程详细方法2. MGG: Multi-granularity Generator for Temporal Action Proposal论文目的——拟解决问题贡献——创新实现流程详细方法3. P-GCN: G…

稳压二极管的应用及注意事项

文章目录稳压二极管也被称为齐纳二极管 齐纳二极管和普通二极管的伏安特性曲线 齐纳二极管的工作原理 稳压二极管的伏安特性曲线的正向特性和普通二极管差不多&#xff0c;反向特性是在反向电压低于反向击穿电压时&#xff0c;反向申阳很大&#xff0c;反向漏电流极小。但是…

【学习笔记】AGC028/AGC007

AGC028 Removing Blocks High Elements 好仙啊。 我会转化&#xff01;&#xff01;问题转化为在原序列剩下的数中取ISISIS序列aaa,bbb&#xff0c;满足cx∣a∣cy∣b∣cx|a|cy|b|cx∣a∣cy∣b∣ 。对于没在a,ba,ba,b序列中的数&#xff0c;可以通过恰当放置使其不对前缀最大…

并发编程- synchronized,Lock及volatile的使用

文章目录并发编程的可见性问题解决方法synchronizedLockvolatile并发编程的可见性问题 多线程访问共享变量&#xff0c;造成线程不安全&#xff0c;最后的数值不对 public class VDemo {private static int num 0;public static void add() {num;}public static void main(St…

红队内网渗透神器--CobaltStrike安装教程

CobaltStrike介绍&#xff1a; CobaltStrike是一款渗透测试神器&#xff0c;被业界人称为CS神器。CobaltStrike分为客户端与服务端&#xff0c;服务端是一个&#xff0c;客户端可以有多个&#xff0c;可被团队进行分布式协团操作。 CobaltStrike集成了端口转发、服务扫描&…

Ubuntu 手动配置DNS

使用ping命令测试百度域名时发现&#xff0c;无法解析这个域名&#xff0c;说明当前系统上没有配置DNS服务器。配置DNS服务器的方式主要有以下两种&#xff1a; 目录 1、修改DNS配置文件 /etc/resolv.conf 2、修改网卡配置文件 /etc/network/interfaces 1、修改DNS配置文件 /e…

【附源码】计算机毕业设计JAVA宠物云寄养系统

【附源码】计算机毕业设计JAVA宠物云寄养系统 目运行 环境项配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; JAVA myba…

Vue3 - toRef() 使用教程

介绍 它可用于为响应式对象上的 property 创建 ref&#xff0c;这样创建的 ref 与其源 property 保持同步&#xff0c;当改变源 property 时&#xff0c;将更新 ref &#xff0c;反之亦然。 这段话有些晦涩难懂&#xff0c;其实用大白话说&#xff0c;就是当你使用 reactive 创…

如何拆分PDF成单页?这三个方法分享给你

很多朋友在平时的工作中&#xff0c;经常需要处理一些PDF格式的文件&#xff0c;但是如果PDF文件的占用空间太大&#xff0c;难以进行操作处理&#xff0c;这时我们就需要先将其拆分成多个小文件&#xff0c;那你们知道要怎么把PDF拆分成多个文件吗&#xff1f;今天我就来给大家…

RK3568平台开发系列讲解(LCD篇)DRM 显示框架

🚀返回专栏总目录 文章目录 一、DRM 显示框架二、DRM 驱动和 libdrm 交互过程2.1、GEM:2.2、KMS:三、DRM 驱动路径3.1、Uboot驱动路径3.2、内核驱动路径沉淀、分享、成长,让自己和他人都能有所收获!😄 📢DRM 英文名叫 Direct Rendering Manager,用来管理显示输出,图…

App Languages 批量导入管理flutter多语言文案

前段时间AppLanguages推出了iOS、Mac版的多语言文案导入功能&#xff0c;好几个小伙伴点赞&#xff0c;称其为“干货工具”&#xff0c;最近加班加点支持了flutter的多语言文案管理功能。 操作界面 批量导入 1&#xff09;需要选择lib文件夹的路径&#xff0c;方便创建和寻找…

2022年11月华南师范大学自考本科-计算机信息管理课程实验—《数据库系统原理》实践题目

《 计算机信息管理课程实验——数据库系统原理 》课程试卷 答卷提交说明&#xff1a; 在mysql环境下填写SQL命令完成以下实践的题目&#xff0c;并返回执行结果的截图&#xff0c;答卷的答题格式如下&#xff0c;包括三部分&#xff1a;题目&#xff0c;SQL文本代码&#x…

【测试开发面试】6家企业真实面试,最终成功入职外企......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 粉丝小A 测试开发的…

3、HTML——注释、转义字符、超链接标签、锚链接、功能性超链接、列表标签、有序列表、无序列表、定义列表

目录 一、注释标签 二、转义字符 1、空格&#xff1a; 2、大于号/小于号&#xff1a;>/< 3、引号&#xff1a;" 4、版权&#xff1a;© 5、商标&#xff1a;& 6、常见转义字符 三、超链接标签&#xff1a;a 四、锚链接 1、跳转同网页位置 2、…

铁威马NAS如何开启二次验证提高系统安全性

想到登录TNAS时更安全&#xff1f;直接开启OTP二次验证&#xff0c;通过 TNAS mobile生成的一次性密码登录NAS存储&#xff0c;简单设置&#xff0c;提升TOS系统访问安全性给你TNAS双重保护。 1.首先&#xff0c;确认你的TOS系统在5.0.176以上&#xff1b; 2.登录TOS 系统后&…

中国为什么要发展人工智能

“基建狂魔”,这是很多网友对中国的爱称。一方面是知道中国的基础设施建设速度很快,另一方面也是对中国整体实力的信心。疫情时期,武汉方舱医院只用了10多天就完成了建造,震惊世界,也让国人骄傲。 如果只看现在,你可能会觉得中国有这样的速度,是理所当然。但如果你知道最…

FPGA SATA IP控制器的SATA接口调试记录

本文档是基于FPGA K7 SATA IP控制器的SATA接口调试记录&#xff0c;接口遵循标准的ACHI协议。 操作系统内核版本&#xff1a;5.4.18 由于K7PCIE只有3个bar&#xff0c;AHCI协议规定SATA控制器是在第四个BAR上&#xff0c;另外由于PCIE配置空间设备类寄存器和能力寄存器未配置成…

数学之美系列 1.3w字精简版阅读笔记

目录 系列一&#xff1a;统计语言模型 (Statistical Language Models) 系列二&#xff1a;谈谈中文分词 系列三&#xff1a;隐含马尔可夫模型在语言处理中的应用 系列四&#xff1a;怎样度量信息 系列五&#xff1a;布尔代数与搜索引擎的索引 系列六&#xff1a;图论和网…

【深入理解Kotlin协程】协程中的Channel和Flow 协程中的线程安全问题

热数据通道 Channel Channel 实际上就是 个并发安全的队列&#xff0c;它可以用来连接协程&#xff0c;实现不同协程的通信&#xff0c;代码如代码清单所示 suspend fun testChannel() {val channel Channel<Int>() var i 0//生产者 发val producer GlobalScope.lau…