L298N 直流电机驱动模块与 Arduino

news2025/7/10 21:12:37

L298N 直流电机驱动模块与 Arduino

原文地址

将L298N DC和步进电机驱动器与Arduino接口的教程

L298N 电机驱动器可以控制两个直流电机的速度和旋转方向。

此外,它还可以控制双极步进电机,例如NEMA 17。如果您想了解更多信息,请查看本教程。

使用 L17N 和 Arduino 控制 NEMA 298 步进电机的教程

L298N电机驱动器和Arduino控制步进电机:Control Stepper Motor with L298N Motor Driver & Arduino (lastminuteengineers.com)

控制直流电机

只有当我们可以控制直流电机的速度和旋转方向时,我们才能完全控制它。

  • PWM – 控制速度
  • H桥 – 控制车轮方向

让我们进一步了解这些技术。

直流电机的速度可以通过改变其输入电压来控制。实现此目的的一种广泛使用的技术是脉宽调制(PWM)。

PWM是一种通过发送一系列ON-OFF脉冲来调整输入电压平均值的技术。该平均电压与脉冲的宽度成正比,称为占空比

占空比越高,施加到直流电机的平均电压就越高,从而导致电机速度增加。占空比越短,施加到直流电机的平均电压越低,导致电机速度降低。

下图显示了具有各种占空比和平均电压的PWM技术。

具有占空比的脉宽调制PWM技术脉宽调制(PWM)技术

H桥 – 控制车轮方向

直流电机的旋转方向可以通过改变其输入电压的极性来控制。实现此目的的一种广泛使用的技术是使用 H 桥。

H桥电路由四个排列成H形的开关组成,电机位于中心。

同时关闭两个特定开关可反转施加到电机的电压的极性。这会导致电机旋转方向发生变化。

以下动画显示了 H 桥电路的工作原理。

H桥工作电机方向控制动画H桥工作

L298N 电机驱动芯片

模块的中心是一个大的黑色芯片,带有一个厚实的散热器 - L298N。

L298N 电机驱动器模块 - IC

L298N芯片包含两个标准H桥,能够驱动一对直流电机,非常适合构建两轮机器人平台。

L298N 电机驱动器的电源范围为 5V 至 35V,每通道能够提供 2A 的连续电流,因此它与我们的大多数直流电机配合得很好。

技术规格

以下是规格:

电机输出电压5V – 35V
电机输出电压(推荐)7V – 12V
逻辑输入电压5V – 7V
每通道连续电流2一
最大功耗25

有关更多详细信息,请参阅下面的数据表。

L298N 数据表

L298N 电机驱动器模块引脚排列

L298N 模块有 11 个引脚,允许它与外界通信。引脚排列如下:

L298N 电机驱动器模块引脚排列
在这里插入图片描述

电源引脚

L298N 电机驱动器模块从 3 针 间距3.5mm螺丝端子接收电源。

L298N 模块电源引脚
L298N 电机驱动器有两个输入电源引脚:VS 和 VSS。

VS引脚为 IC 的内部 H 桥供电,该桥驱动电机。该引脚接受 5V 至 12V 的输入电压。

VSS用于为 L298N IC 内的逻辑电路供电,范围为 5V 至 7V。

接地是公共接地引脚。

输出引脚

L298N电机驱动器的输出通道,输出 1 和输出 2用于电机 A 和输出 3 和输出 4对于电机 B,用两个 3.5mm 间距的螺丝端子断开到模块的边缘。您可以将两个 5-12V 直流电机连接到这些端子。

L298N模块电机输出连接引脚

模块上的每个通道可为直流电机提供高达 2A 的电流。然而,提供给电机的电流量取决于电机电源的容量。

方向控制引脚

方向控制引脚允许您控制电机是向前还是向后旋转。这些引脚实际上控制着L298N芯片内H桥电路的开关。

L298N 模块方向控制引脚

该模块有两个方向控制引脚。这IN1 和 IN2销控制电机A的旋转方向;而IN3 和 IN4控制电机B的旋转方向。

电机的旋转方向可以通过对这些输入施加逻辑高电平(5V)或逻辑低电平(接地)来控制。下图显示了各种组合及其结果。

输入1输入2车轮方向
低(0)低(0)电机关闭
高(1)低(0)向前
低(0)高(1)向后
高(1)高(1)电机关闭

速度控制引脚

速度控制引脚ENA和ENB用于打开/关闭电机并控制其速度。

L298N 模块速度控制引脚

将这些引脚拉高会导致电机旋转,而将它们拉低将停止它们。通过脉宽调制(PWM),可以控制电机的速度。

该模块通常在这些引脚上带有跳线。当此跳线就位时,电机全速旋转。如果要以编程方式控制电机的速度,请卸下跳线并将它们连接到Arduino的PWM引脚。

板载 5V 稳压器和跳线

该模块包括一个 78M05 5V 稳压器,可通过跳线使能或禁用。

L298N 模块 5V 稳压器和使能跳线

当此跳线就位时,5V稳压器使能,逻辑电源(VSS)从电机电源(VS)派生。在这种情况下,5V输入端子充当输出引脚,提供5V 0.5A电流。您可以使用它为 Arduino 或其他需要 5V 电源的电路供电。

当跳线被移除时,5V稳压器被禁用,我们必须通过VSS引脚单独提供5V。

警告:

如果电机电源小于 12V,则可以将跳线保持在原位。如果大于12V,则必须拆下跳线,以防止损坏板载5V稳压器。

此外,当跳线就位时,请勿同时为 VSS 和 VS 引脚供电。

L298N的压降

L298N 的压降约为 2V。这是因为内部开关晶体管在正向偏置时的压降约为1V,并且由于H桥需要电流通过两个晶体管,因此总压降为2V。

因此,如果将 12V 连接到电机电源端子,电机将接收大约 10V。这意味着 12V 直流电机永远不会全速旋转。

L298N 电机驱动器模块内部压降

为了使电机以最大速度运行,电机电源的电压应略高于电机的实际电压要求(+2V)。

考虑到2V的压降,如果使用5V电机,则需要在电机电源端子提供7V。如果您有 12V 电机,那么您的电机电源电压应为 14V。

这种过大的压降会导致热量耗散。这就是为什么基于 L298N 的电机驱动器需要一个大散热器的原因。

将 L298N 电机驱动器模块连接到 Arduino

现在我们已经了解了有关该模块的所有信息,我们可以开始将其连接到我们的Arduino!

让我们从连接电机电源开始。在我们的实验中,我们使用直流变速箱电机,也称为“TT”电机,常见于两轮驱动机器人中。它们的额定电压为 3 至 12V。因此,我们将外部 12V 电源连接到 VS 端子。由于L298N的压降约为2V,因此电机将接收10V并以略低的RPM旋转。不过没关系。

接下来,我们需要为 L298N 的逻辑电路提供5V。我们将使用板载 5V 稳压器从电机电源吸收 5V,因此请将 5V-EN 跳线固定到位。

现在,将 L298N 模块的输入和使能引脚(ENA、IN1、IN2、IN3、IN4 和 ENB)连接到六个 Arduino 数字输出引脚(9、8、7、5、4 和 3)。请注意,Arduino 输出引脚 9 和 3 均支持 PWM。

最后,将一个电机连接到端子 A(OUT1 和 OUT2),另一个连接到端子 B(OUT3 和 OUT4)。您可以更换电机的连接。从技术上讲,没有正确或错误的方法。

将 L298N 电机驱动器模块与直流 TT 电机和 Arduino UNO 连接

Arduino示例代码

下面的代码将向您展示如何使用 L298N 电机驱动器控制直流电机的速度和旋转方向,并可作为更多实际实验和项目的基础。

代码将电机沿一个方向移动一圈,然后沿相反方向移动。还涉及一些加速和减速。

加速或减速电机时,您可能会听到它发出嗡嗡声,尤其是在较低的 PWM 值下。这是正常的;没有什么可担心的。发生这种情况是因为直流电机需要最低的电压才能运行。

// Motor A connections
int enA = 9;
int in1 = 8;
int in2 = 7;
// Motor B connections
int enB = 3;
int in3 = 5;
int in4 = 4;

void setup() {
	// Set all the motor control pins to outputs
	pinMode(enA, OUTPUT);
	pinMode(enB, OUTPUT);
	pinMode(in1, OUTPUT);
	pinMode(in2, OUTPUT);
	pinMode(in3, OUTPUT);
	pinMode(in4, OUTPUT);
	
	// Turn off motors - Initial state
	digitalWrite(in1, LOW);
	digitalWrite(in2, LOW);
	digitalWrite(in3, LOW);
	digitalWrite(in4, LOW);
}

void loop() {
	directionControl();
	delay(1000);
	speedControl();
	delay(1000);
}

// This function lets you control spinning direction of motors
void directionControl() {
	// Set motors to maximum speed
	// For PWM maximum possible values are 0 to 255
	analogWrite(enA, 255);
	analogWrite(enB, 255);

	// Turn on motor A & B
	digitalWrite(in1, HIGH);
	digitalWrite(in2, LOW);
	digitalWrite(in3, HIGH);
	digitalWrite(in4, LOW);
	delay(2000);
	
	// Now change motor directions
	digitalWrite(in1, LOW);
	digitalWrite(in2, HIGH);
	digitalWrite(in3, LOW);
	digitalWrite(in4, HIGH);
	delay(2000);
	
	// Turn off motors
	digitalWrite(in1, LOW);
	digitalWrite(in2, LOW);
	digitalWrite(in3, LOW);
	digitalWrite(in4, LOW);
}

// This function lets you control speed of the motors
void speedControl() {
	// Turn on motors
	digitalWrite(in1, LOW);
	digitalWrite(in2, HIGH);
	digitalWrite(in3, LOW);
	digitalWrite(in4, HIGH);
	
	// Accelerate from zero to maximum speed
	for (int i = 0; i < 256; i++) {
		analogWrite(enA, i);
		analogWrite(enB, i);
		delay(20);
	}
	
	// Decelerate from maximum speed to zero
	for (int i = 255; i >= 0; --i) {
		analogWrite(enA, i);
		analogWrite(enB, i);
		delay(20);
	}
	
	// Now turn off motors
	digitalWrite(in1, LOW);
	digitalWrite(in2, LOW);
	digitalWrite(in3, LOW);
	digitalWrite(in4, LOW);
}

代码说明:

Arduino代码相当简单。它不需要任何库即可工作。代码首先声明连接到 L298N 控制引脚的 Arduino 引脚。

// Motor A connections
int enA = 9;
int in1 = 8;
int in2 = 7;
// Motor B connections
int enB = 3;
int in3 = 5;
int in4 = 4;

在代码的设置部分,所有电机控制引脚(包括方向和速度控制引脚)都配置为数字输出。方向控制引脚被拉低以最初禁用两个电机。

void setup() {
	// Set all the motor control pins to outputs
	pinMode(enA, OUTPUT);
	pinMode(enB, OUTPUT);
	pinMode(in1, OUTPUT);
	pinMode(in2, OUTPUT);
	pinMode(in3, OUTPUT);
	pinMode(in4, OUTPUT);
	
	// Turn off motors - Initial state
	digitalWrite(in1, LOW);
	digitalWrite(in2, LOW);
	digitalWrite(in3, LOW);
	digitalWrite(in4, LOW);
}

在代码的循环部分,我们调用两个用户定义的函数,延迟一秒。

void loop() {
	directionControl();
	delay(1000);
	speedControl();
	delay(1000);
}

这些函数是:

  • directionControl()– 此功能使两个电机全速旋转两秒钟。然后,它反转电机的旋转方向并旋转两秒钟。最后,它停止电机。

    void directionControl() {
    	// Set motors to maximum speed
    	// For PWM maximum possible values are 0 to 255
    	analogWrite(enA, 255);
    	analogWrite(enB, 255);
    
    	// Turn on motor A & B
    	digitalWrite(in1, HIGH);
    	digitalWrite(in2, LOW);
    	digitalWrite(in3, HIGH);
    	digitalWrite(in4, LOW);
    	delay(2000);
    	
    	// Now change motor directions
    	digitalWrite(in1, LOW);
    	digitalWrite(in2, HIGH);
    	digitalWrite(in3, LOW);
    	digitalWrite(in4, HIGH);
    	delay(2000);
    	
    	// Turn off motors
    	digitalWrite(in1, LOW);
    	digitalWrite(in2, LOW);
    	digitalWrite(in3, LOW);
    	digitalWrite(in4, LOW);
    }
    
  • speedControl()– 此函数使用 analogWrite() 函数生成 PWM 信号,该信号将两个电机从零加速到最大速度,然后再将它们减速回零。最后,它停止电机。

    void speedControl() {
    	// Turn on motors
    	digitalWrite(in1, LOW);
    	digitalWrite(in2, HIGH);
    	digitalWrite(in3, LOW);
    	digitalWrite(in4, HIGH);
    	
    	// Accelerate from zero to maximum speed
    	for (int i = 0; i < 256; i++) {
    		analogWrite(enA, i);
    		analogWrite(enB, i);
    		delay(20);
    	}
    	
    	// Decelerate from maximum speed to zero
    	for (int i = 255; i >= 0; --i) {
    		analogWrite(enA, i);
    		analogWrite(enB, i);
    		delay(20);
    	}
    	
    	// Now turn off motors
    	digitalWrite(in1, LOW);
    	digitalWrite(in2, LOW);
    	digitalWrite(in3, LOW);
    	digitalWrite(in4, LOW);
    }
    

蓝牙控制机器人项目描述:

使用 L298N 电机驱动程序和 Android 手机应用程序制作 Arduino 蓝牙控制机器人汽车。

蓝牙 Arduino

蓝牙模块的 VCC 与 5 V连接.

地线,与Arduino的接地相连。

TX线,与Arduino的引脚2连接。

Rx 线,与 Arduino 的引脚编号 3 连接。

#include <SoftwareSerial.h>
SoftwareSerial Blue(2, 3);

int ena = 5;
int enb = 6;

int in1 = 8;
int in2 = 9;
int in3 = 10;
int in4 = 11;
long int data;
long int command1 = 92;  // forward
long int command2 = 79;  // left
long int command3 = 71;  //  right
long int command4 = 91;  //  Reverse
long int command5 = 10;  // stop

char state = 0;

void setup() {
  Serial.begin(9600);
  Blue.begin(9600);

  pinMode(ena, OUTPUT);
  pinMode(enb, OUTPUT);

  pinMode(in1, OUTPUT);
  pinMode(in2, OUTPUT);
  pinMode(in3, OUTPUT);
  pinMode(in4, OUTPUT);

  analogWrite(ena, 255);
  analogWrite(enb, 255);
  delay(1000);
}

void loop() {

  while (Blue.available() == 0)
    ;
  if (Blue.available() > 0) {
    data = Blue.parseInt();
  }
  delay(100);
  //Serial.print(data);

  if (data == command1)  // Forward
  {

    digitalWrite(in1, HIGH);
    digitalWrite(in2, LOW);
    digitalWrite(in3, LOW);
    digitalWrite(in4, HIGH);
    //delay(100);
  }

  if (data == command2)  // left
  {
    digitalWrite(in1, LOW);
    digitalWrite(in2, LOW);
    digitalWrite(in3, LOW);
    digitalWrite(in4, HIGH);
    delay(100);
  }

  if (data == command3)  // Right
  {
    digitalWrite(in1, HIGH);
    digitalWrite(in2, LOW);
    digitalWrite(in3, LOW);
    digitalWrite(in4, LOW);
    delay(100);
  }

  if (data == command4)  // Reverse
  {
    digitalWrite(in1, LOW);
    digitalWrite(in2, HIGH);
    digitalWrite(in3, HIGH);
    digitalWrite(in4, LOW);
    delay(100);
  }


  if (data == command5)  // Stop
  {
    digitalWrite(in1, LOW);
    digitalWrite(in2, LOW);
    digitalWrite(in3, LOW);
    digitalWrite(in4, LOW);
    // delay(100);
  }
}

使用L298N电机驱动器的Arduino避障机器人

作者:Paul Vertor in CircuitsArduino

原文

简介:

使用L298N电机驱动器的Arduino避障机器人

在我们开始之前,您是否想过是为您的项目选择 Arduino 电机扩展板还是 L298N 电机驱动器?我个人更喜欢 L298N 电机驱动器,因为可以使用更多 Arduino 的引脚为我们的机器人添加更多功能!

1. 何时使用 Arduino 电机扩展板 L293D?

优势

首先,我们可以在机器人底盘上节省一些空间,而且与 L298N 电机驱动器相比,使用电机扩展板时用于接线的跳线要少得多。

其次,我们还可以使用 Adafruit 电机扩展板库通过软件设置电机速度并定义最大速度。

最后,Arduino和电机可以使用单个直流电源,之后扩展板将处理其余部分,以确保您的伺服和电机正常运行。

弊端

将引脚接头焊接到扩展板层上需要一些焊接技巧。此外,该扩展板使用 Arduino 计时器进行伺服操作,这可能会导致“AFMotor.h”(即 Adafruit Motor Shield)库和其他库之间的计时器冲突。最后但并非最不重要的一点是,一旦电流超过 1A,你可能希望在电机驱动器上安装一个散热器,否则会出现热故障,可能会烧坏芯片。

规格

您可以在此处查看有关扩展板规格的更多信息。

2. 何时使用L298N电机驱动器?

优势

它只需要一些接线 - 无需焊接。虽然这个模块没有预先构建的库,但可以使用Arduino的PWM(脉宽调制)引脚和一些简单的代码行来设置电机的速度。

这里对烧坏芯片的担忧要少得多,因为模块上的每个通道都可以向直流电机提供高达 2A 的电流,再加上一个大块的散热器可以保护模块免受可能的热故障的影响(顺便说一下,散热器使驱动器看起来更酷)。

由于我们可以使用所有Arduino的引脚(在电机扩展板上,可以使用的引脚数量减少了一半以上),因此有更多的引脚可用于更多功能!

Arduino和电机驱动器分开放置将在机器人底盘上占用更多空间。电源和接地连接也可能需要额外的面包板。此外,在大多数情况下,Arduino和电机需要两个独立的直流电源。

如果电池电源无法提供恒定功率,您还可能会遇到一些奇怪的伺服操作,从而导致 Arduino 重置问题并导致伺服抖动或不工作。但不要担心 - 稍后我将介绍一种解决此问题的简单方法!

规格

以下是 lastminuteengineers.com 的规范:

“L298N 电机驱动器 IC 实际上有两个输入电源引脚:”Vss“和”Vs”。
从Vs引脚,H桥获得驱动电机的电源,可以是5至35V。Vss用于驱动5至7V的逻辑电路。他们共用一个’GND’。

在此处查看有关如何使用电机驱动器的更多信息。

第 1 步:

步骤 2:准备组件和工具

在这里插入图片描述

准备组件和工具

准备组件和工具

在这里插入图片描述

对于此项目,您将需要:

  1. HC-SR04超声波传感器
  2. 超声波传感器支架
  3. 伺服电机(我使用了SG90伺服)
  4. 三轮机器人底盘
  5. 小型面包板
  6. A 7805 稳压器
  7. 9伏电池(Arduino的电源)
  8. 一个 9 V 电池直流插孔
  9. 两节 3.7 V 18650 锂离子电池(电机电源)
  10. 带开关的双插槽 18650 电池座
  11. 一个 Arduino Uno R3
  12. A / B 型USB电缆(用于将代码上传到Arduino)
  13. L298N 电机驱动器
  14. 两个橡胶轮
  15. 旋转脚轮/滚珠脚轮
  16. 两个 3-6 V DC 塑料电机(又名“TT”电机)
  17. 一些公-公和公-母跳线连接组件

将组件安装在机器人底盘上有许多选择,包括使用热胶、双面胶带或螺钉。

以下是您可能需要的一些额外工具:

  • 热胶枪
  • 剪刀
  • 一把螺丝刀
  • 万用表(如果您想精确测量电池的电压 - 我稍后会谈到这一点)
  • 焊料、烙铁和传统海绵
  • 18650 3.7 V 锂离子电池充电器(长期使用需要)

上面提到的焊接工具只是焊接的最低要求。可以在此处查看焊接的基本工具和材料以及如何焊接。

第 3 步:将跳线焊接到每个电机的端子 A&B

焊接跳线到每个电机的端子 A&B

焊接跳线到每个电机的端子 A&B

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WxcPt8RT-1678264694735)(null)]

焊接跳线到每个电机的端子 A&B

3-6 V DC TT 电机上有两个端子。从现在开始,让我们称它们为终端 A 和 B。棘手的是,每个端子可以是A或B,具体取决于您将电机放置在机器人底盘上的方式。但规则很简单:将电机连接到机箱后,无论顶部的哪个端子是A,下面的另一个端子都是B.识别电机侧是A还是B是一个重要的过程,它将确保将电机的电线正确连接到L298N电机驱动器, 确保它将机器人的轮子沿所需方向旋转(向前方向或向后方向)。

现在,您只需要记住项目中两个电机的每个电机的端子 A 在哪里以及端子 B 的位置。

第 4 步:组装机器人的零件

在这里插入图片描述

img

img

img
在这里插入图片描述

在这里插入图片描述

img

在这里插入图片描述

在这里插入图片描述

img

在连接所有组件之前,我们将固定底盘上的每个组件以形成机器人的形状。

由于我在顶面使用了空间有限的单层底盘,因此已经放入了两个带轮子的电机,脚轮,电池座和伺服器固定在底面上。超声波传感器连接到传感器支架上,然后拧到伺服电机上。此外,Arduino Uno 板和电机驱动器模块放置在机器人的尾部,而面包板和 9 V 电池放置在机器人的中间。在这些组件中,电池座最后安装,以避免重叠在用于将组件连接到顶部的螺钉上。此外,请注意,在这个阶段,我们还没有对18650个细胞做任何事情。我建议我们把这些留在那里,直到你对如何照顾好它们有一些想法。

第 5 步:将所有内容连接起来

连接一切

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

img

在这里插入图片描述

在这里插入图片描述

现在我们已经迈出了重要的一步。这些连接允许您的Arduino与机器人中的其他组件进行通信。照片说明中写的注释可能会对您有所帮助。

电机与电机驱动器的导线

如果看一下L298N电机驱动器原理图,可以看出有四个输出端子,包括OUT1、OUT2、OUT3和OUT4,分别以逆时针方向安装在模块上,用于为电机提供电流。

还记得本开头提到的电机端子 A 和 B 吗?现在是时候将电机 1(左电机)的 A 线连接到 OUT3,将 B 线连接到 OUT4,将电机 2 的 A 线(右电机)连接到 OUT1,最后将 B 线连接到 OUT2。

就我而言,紫色是左侧电机的 A 线的颜色,而蓝色是同一电机的 B 线的颜色,反之亦然(蓝色表示 A,紫色表示 B)。

将 Arduino 5 V 和 GND 引脚连接到试验板

这些引脚用于在面包板上创建两条5V和GND的公共共享线路,为机器人内的不同组件供电。

为您的电机驱动器供电

再次查看 L298N 电机驱动器原理图。您可以看到有三个端子用于为电机驱动器供电,包括 VCC、GND 和 5V。电池座的正极和负极线分别连接到VCC和GND为两个电机供电,而5V端子则连接到试验板上的公共5V线路,为模块的逻辑电路供电。

将电机驱动器连接到 Arduino 板

同样从上面的L298N原理图中,我们可以看到有六个输入引脚,从左到右分别是ENA,IN1,IN2,IN3,IN4和ENB。由于很可能有跳线代替ENA和ENB,我们只需要将IN1-IN4相应地连接到数字引脚4-7(又名引脚D4-D7)。这些销用于控制电机向前或向后旋转的方向。具体来说,IN4 向前驱动左侧电机,IN3 反转该电机,IN2 设置右侧电机的前进方向,IN1 反转。

ENA和ENB上预装的跳线基本上会将电机设置为最大速度。如果您想使用“analogWrite()”功能控制电机的速度,只需移除预安装的跳线,然后将 ENA 和 ENB 连接到 Arduino 上可用的 PWM 引脚,并将任何值写入这些引脚的范围从 0 到 255。

使用稳压器为伺服提供恒定功率

稳压器有三个引脚,包括输入、接地和输出。在这种情况下,它将从Arduino的Vin引脚获取9 V输入电压,并向伺服输出5 V的恒定功率。稳压器和伺服器都将沉入面包板上的公共接地线。

舵机还有三个引脚,分别是VCC,GND和信号引脚。如您所知,VCC 将连接到稳压器的“输出”引脚,而信号引脚连接到 Arduino 板上的引脚 D9。请注意,如果向 7805 输入 5 V,则伺服器将不起作用!因此,如果您使用 USB 电缆为 Arduino 供电,请将伺服器的 VCC 引脚连接到常见的 5 V 线路。

将超声波传感器连接到 Arduino Uno

超声波传感器有四个引脚,分别是VCC,触发,回声和GND。通常的做法是为每个引脚选择不同的电线颜色。我为VCC选择了橙色,为触发器选择了紫色,为回声选择了灰色,为GND选择了蓝色。该模块由公共 5 V 线路供电,并与其他组件吸收到同一接地线路。触发引脚连接到Arduino的引脚A0,而Echo引脚连接到引脚A1。

使用 DC 插孔使用 9 V 电池为 Arduino 供电

只需将插孔插入 Arduino 的外部直流端口,然后将 18650 电池放入电池座中,同时打开开关即可为系统供电。但是坚持住!你的机器人的大脑目前是空的,你需要在其中输入一些代码。

第 6 步:将代码上传到机器人的大脑

  1. 下载 Arduino IDE 软件
  2. 下载下面提供的代码
  3. 下载“新平”库
  • 在 Arduino IDE 软件的“菜单”选项卡上,单击“工具”/“管理库…”

  • 在搜索栏中输入“NewPing”,然后选择“安装”

  • 将代码上传到您的 Arduino 板

  • 通过 USB 电缆将 Arduino 板连接到您的 PC

  • 在“菜单”选项卡上,单击“工具”,然后为“板”选项选择“Arduino Uno”

  • 单击“验证”符号(看起来像“勾号”)以编译代码

  • 单击“√”符号旁边的“上传”符号,将一些逻辑上传到机器人的大脑

附件

Arduino_FlinchingBot.ino

下载

#include <NewPing.h>
#include <Servo.h>

#define TRIG_PIN A0
#define ECHO_PIN A1
#define MAX_DISTANCE 400

NewPing sonar(TRIG_PIN, ECHO_PIN, MAX_DISTANCE);

Servo myservo;

int distance = 100;
int pos = 0;

void setup() {
  //set up motors
  pinMode(7, OUTPUT);  //left motors forward
  pinMode(6, OUTPUT);  //left motors reverse
  pinMode(5, OUTPUT);  //right motors forward
  pinMode(4, OUTPUT);  //right motors reverse

  // set up servo
  myservo.attach(9);
  myservo.write(90);
  delay(2000);

  distance = readPing();
  delay(60);
}

void loop() {
  int distanceR = 0;
  int distanceL = 0;

  if (distance <= 50) {
    moveStop();
    delay(100);
    moveBackward();
    delay(300);
    moveStop();
    delay(100);
    distanceR = lookRight();
    delay(50);
    distanceL = lookLeft();
    delay(50);

    if (distanceR >= distanceL) {
      if (distanceR <= 30 && distanceL <= 30) {  // if both sides are too narrow
        for (int i = 0; i < 2; i++) {            // turn around
          turnRight();
          moveStop();
          delay(100);
        }
      } else {
        turnRight();
        moveStop();
        delay(100);
      }
    } else if (distanceR < distanceL) {
      if (distanceR < 30 && distanceL <= 30) {  // if both sides are too narrow
        for (int i = 0; i < 2; i++) {           // turn around
          turnLeft();
          moveStop();
          delay(100);
        }
      } else {
        turnLeft();
        moveStop();
        delay(100);
      }
    }
  } else moveForward();

  distance = readPing();
  delay(60);
}

int lookLeft() {
  for (pos = 90; pos <= 180; pos += 1) {  // goes from 90 degrees to 180 degrees
    // in steps of 1 degree
    myservo.write(pos);  // tell servo to go to position in variable 'pos'
    delay(5);
  }
  int distance = readPing();
  delay(60);

  for (pos = 180; pos >= 90; pos -= 1) {  // goes from 180 degrees to 90 degrees
    // in steps of 1 degree
    myservo.write(pos);  // tell servo to go to position in variable 'pos'
    delay(5);
  }
  return distance;  // return distance on the left side
}

int lookRight() {
  for (pos = 90; pos >= 0; pos -= 1) {  // goes from 90 degrees to 0 degree
    // in steps of 1 degree
    myservo.write(pos);  // tell servo to go to position in variable 'pos'
    delay(5);
  }
  int distance = readPing();
  delay(60);

  for (pos = 0; pos <= 90; pos += 1) {  // goes from 0 degree to 90 degrees
    // in steps of 1 degree
    myservo.write(pos);  // tell servo to go to position in variable 'pos'
    delay(5);
  }
  return distance;  // return distance on the right side
}

int readPing() {
  int cm = sonar.ping_cm();
  if (cm == 0)          // if the measured distance exceeds the measuring limit of the ultrasonic sensor, by default the sonar.ping_cm() function will return a value of 0
  {                     // Due to the distance of 0 the robot will keep avoiding even when there is nothing in front of it
    cm = MAX_DISTANCE;  // To fix this, we set the distance to the pre-defined MAX_DISTANCE of 400 cm
  }
  return cm;
}

void moveStop() {
  digitalWrite(7, LOW);
  digitalWrite(6, LOW);
  digitalWrite(5, LOW);
  digitalWrite(4, LOW);
}

void moveForward() {
  digitalWrite(7, HIGH);
  digitalWrite(5, HIGH);
}

void moveBackward() {
  digitalWrite(6, HIGH);
  digitalWrite(4, HIGH);
}

void turnRight() {
  digitalWrite(7, HIGH);
  digitalWrite(4, HIGH);
  delay(250);
  digitalWrite(7, HIGH);
  digitalWrite(5, HIGH);
}

void turnLeft() {
  digitalWrite(5, HIGH);
  digitalWrite(6, HIGH);
  delay(250);
  digitalWrite(7, HIGH);
  digitalWrite(5, HIGH);
}

第 7 步:照顾好 18650 电池

照顾好18650细胞

在将 18650 电池放入电池座为电机供电之前,请务必事先检查其剩余电压,以免意外缩短电池寿命。

那我的意思是什么?如果您想要长期使用的“健康”电池,请尽量不要过度使用或过度充电。例如,始终保持3.2 V至3.9 V的电压值(尽管大多数电池可以充电至最大值4.2 V)。为此,您必须经常检查用于为机器人供电的电池的剩余电压,并在电压降至 3.2 V 以下后对其进行充电。对于我正在使用的电池,通常需要大约两个小时才能将电池部分充电至大约 3.9 V。部分充电时间可能会因不同类型的 18650 电池而异,因此请注意时间!

如图所示,我的一个 18650 电池的剩余电压测量为 3.75 V,所以很好!现在我可以安全地使用它为我的机器人供电。

您可以在此处阅读有关如何延长电池寿命的更多信息。

第 8 步:根据需要修改代码!

在这里插入图片描述

我们快到了!现在我只想提供更多信息,以便您可以自由地个性化机器人的逻辑。

那么机器人是怎么想的呢?如果你看上面的流程图,可以看出机器人会不断检查50厘米的距离内是否有物体在它面前。如果什么都没有,它将继续前进。否则,它将后退以避免与前面的物体发生碰撞,然后它会转头看右侧和左侧,以决定它应该转向哪个方向(左或右)。例如,如果当时右侧有东西挡住,它会向左转,反之亦然。但是,如果两侧都太窄(即两侧的距离都短于30厘米),它只会简单地掉头。转向任何方向后,它将继续直行,关闭动作循环。

第 9 步:完成!

做!

在这里插入图片描述

恭喜你来到这里!让我们将 18650 电池放入电池座中,打开开关,然后将 9 V 电池直流插孔插入 Arduino 的外部直流端口,然后看着您的机器人开始滚动车轮!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/396495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于C/C++综合训练 ----- 贪吃蛇

文章目录一、定义结构体对象二、游戏初始化1. 蛇初始化2. 食物初始化3. 围墙初始化4. 界面初始化三、逻辑编程1. 启动游戏2. 打印成绩3. main函数四、细节处理五、程序源码该篇环境为Visual Studio2022 游戏简述 &#xff1a;在控制终端绘画出一个矩阵表示游戏界面(围墙)&…

android h5餐饮管理系统myeclipse开发mysql数据库编程服务端java计算机程序设计

一、源码特点 android h5餐饮管理系统是一套完善的WEBandroid设计系统&#xff0c;对理解JSP java&#xff0c;安卓app编程开发语言有帮助&#xff08;系统采用web服务端APP端 综合模式进行设计开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要…

javaEE初阶 — HTML 中的常见标签

文章目录注释标签标题标签&#xff1a;h1 h6段落标签&#xff1a;p换行标签&#xff1a;br格式化标签图片标签&#xff1a;img1. img 的 alt 属性2. img 的 title 属性3. width 与 heigth 属性用来描述图的尺寸超链接标签&#xff1a;a表格标签列表标签表单标签1. from 标签2. …

【C++的OpenCV】第十一课-OpenCV图像常用操作(八):直方图计算(cv.calc())

&#x1f389;&#x1f389;&#x1f389;欢迎各位来到小白piao的学习空间&#xff01;\color{red}{欢迎各位来到小白piao的学习空间&#xff01;}欢迎各位来到小白piao的学习空间&#xff01;&#x1f389;&#x1f389;&#x1f389; &#x1f496;&#x1f496;&#x1f496…

发布新闻稿的流程与步骤

发布新闻稿需要遵循一定的流程和步骤&#xff0c;以下是一般的新闻发布流程&#xff1a;1、编写新闻稿新闻稿的内容应当简洁、明确、准确&#xff0c;力求突出新闻价值和亮点。企业和组织可以根据新闻稿的主题和目的&#xff0c;选择不同的写作风格和语言表达方式&#xff0c;以…

春季训练营 | 前端+验证直通车-全实操项目实践,履历加成就业无忧

“芯动的offer”是2023年E课网联合企业全新推出集训培优班&#xff08;线下&#xff09;&#xff0c;针对有一定基础&#xff08;linux、verilog、uvm等&#xff09;在校学生以及想要通过短时间的学习进入到IC行业中的转行人士&#xff0c;由资深IC设计工程师带教&#xff0c;通…

openpnp - 贴片前, 放入一块新板子后, 对板子的坐标矫正

文章目录openpnp - 贴片前, 放入一块新板子后, 对板子的坐标矫正概述笔记实验前置条件实验开始建立自己板子上的Mark点封装, 用于自己人工圈定判断Mark点位置是否正确建立mark点封装根据多个mark点, 来精确定位板子左下角原点坐标ENDopenpnp - 贴片前, 放入一块新板子后, 对板子…

图像边缘检测

文章目录前言一、图像边缘检测二、边缘检测算子1. Roberts算子2. Prewitt算子3. Sobel算子三、代码实现总结前言 有了图像放大缩小&#xff0c;图像灰度化处理等相关基础知识过后&#xff0c;就可以进行图像边缘检测了。边缘检测最后也会在FPGA上面实现&#xff0c;此处小编已经…

神经网络分类任务(手写数字识别)

1.Mnist分类任务 网络基本构建与训练方法&#xff0c;常用函数解析 torch.nn.functional模块 nn.Module模块 学习方法&#xff1a;边用边查&#xff0c;多打印&#xff0c;duogua 使用jupyter的优点&#xff0c;可以打印出每一个步骤。 2.读取数据集 自动下载 %matplotl…

移动设备配置文件管理

什么是移动设备上的设备配置文件 随着移动设备在工作中使用量的迅速增加&#xff0c;有必要将这些设备置于企业管理之下&#xff0c;以确保企业数据安全且设备符合行业标准。移动设备上的配置文件允许 IT 管理员通过对员工使用的智能手机、平板电脑和笔记本电脑实施公司策略和…

三维人脸实践:基于Face3D的渲染、生成与重构 <一>

face3d: Python tools for processing 3D face git code: https://github.com/yfeng95/face3d paper list: PaperWithCode 该方法广泛用于基于三维人脸关键点的人脸生成、属性检测&#xff08;如位姿、深度、PNCC等&#xff09;&#xff0c;能够快速实现人脸建模与渲染。推荐…

学生使用的台灯该怎么选择?2023适合学生房间的灯推荐

随着社会的进步发展&#xff0c;我们的生活水平越来越高&#xff0c;很多家庭的孩子都开始使用台灯这种家居产品&#xff0c;对于学习任务繁重的他们来说&#xff0c;台灯确实可以起到保护眼睛、提高学习专注度的作用。那么不知道朋友们是否了解过&#xff0c;台灯该怎么选择呢…

本地开发vue项目联调遇到访问接口跨域问题

本地开发vue项目联调遇到访问接口跨域问题 修改本地的localhost 一&#xff1a;按winr打开运行窗口&#xff0c;输入drivers &#xff0c;然后回车 二&#xff1a;打开etc文件夹&#xff0c;然后用记事本的方式打开里面的hosts文件&#xff0c; 三&#xff1a;这时我们就可…

oneblog_justauth_三方登录配置【QQ】

文章目录oneblog添加第三方平台QQ互联平台创建三方应用完善信息登录oneblog添加第三方平台 1.oneblog管理端&#xff0c;点击左侧菜单 网站管理——>社会化登录配置管理 ,添加一个社会化登录 2.编辑信息如下&#xff0c;选择QQ平台后复制redirectUri,然后去QQ互联平台获取…

UART 串口通信

第18.1讲 UART串口通信原理讲解_哔哩哔哩_bilibili 并行通信 一个周期同时发送8bit的数据&#xff0c;占用引脚资源多 串行通信 串行通信的通信方式&#xff1a; 同步通信 同一时钟下进行数据传输 异步通信 发送设备和接收设备的时钟不同 但是需要约束波特率&#xff08;…

大数据|HDFS分布式文件系统

前文回顾&#xff1a;Hadoop系统 目录 &#x1f4da;HDFS概述 &#x1f4da;HDFS在设计时的假设和目标 &#x1f4da;HDFS的基本特征 &#x1f4da;HDFS的体系结构 &#x1f407;目录节点 &#x1f407;数据节点 &#x1f4da;HDFS的副本机制 &#x1f4da;HDFS的数据存…

KD500全自动电容电感测试仪

一、产品特点 1.本仪器采用了先进的测量原理与四端测量技术&#xff0c;可以精确测量、测试重复性能好&#xff1b; 2.能在不拆线的状态下&#xff0c;测量成组并联着的单个电容器的电容量和成组并联着电容器组的总电容量&#xff1b; 3.大屏幕液晶显示屏&#xff08;320X24…

关于Activiti7审批工作流绘画流程图(2)

文章目录一、25张表详解二、安装插件一.定制流程提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、25张表详解 虽然表很多&#xff0c;但是仔细观察&#xff0c;我们会发现Activiti 使用到的表都是 ACT_ 开头的。表名的第二部分用两个字母表明表的用…

vuex基础之初始化功能、state、mutations、getters、模块化module的使用

vuex基础之初始化功能、state、mutations、getters、模块化module的使用一、Vuex的介绍二、初始化功能三、state3.1 定义state3.2 获取state3.2.1 原始形式获取3.2.2 辅助函数获取(mapState)四、mutations4.1 定义mutations4.2 调用mutations4.2.1 原始形式调用($store)4.2.2 辅…

数据分析方法及名词解释总结_(面试2)

1、用户画像 1.1、什么是用户画像&#xff1f;如何构建用户画像&#xff1f; - 知乎提到用户画像&#xff0c; 很多人都可能存在的错误认知&#xff0c;即把用户画像简单理解成用户各种特征&#xff0c;比如说姓名、性别、…https://www.zhihu.com/question/372802348/answer/2…