《小猫猫大课堂》三轮5——动态内存管理(通讯录动态内存化)

news2025/6/8 18:09:35

宝子,你不点个赞吗?不评个论吗?不收个藏吗?

最后的最后,关注我,关注我,关注我,你会看到更多有趣的博客哦!!!

喵喵喵,你对我真的很重要。

目录

前言

动态内存产生的原因

动态内存函数

malloc

free

         calloc

         realloc

常见的动态内存错误

对NULL指针的解引用操作

对动态开辟空间的越界访问

对非动态开辟内存使用free释放

使用free释放一块动态开辟内存的一部分

对同一块动态内存多次释放

动态开辟内存忘记释放(内存泄漏)

举几个栗子,Test函数的结果会怎么样?

C/C++程序的内存开辟

柔性数组

柔性数组的特点:

柔性数组的优势

通讯录(动态内存化)

开辟空间

初始化通讯录

增加联系人(可能需要增容)

销毁通讯录

总结


前言

动态内存不是很难理解,好好看,应该会很不错!B站有很多好视频,那个可能会更容易理解,再练练题建立自信,应该会很棒!宝子加油鸭!爱你呦!喵~


动态内存产生的原因

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

1. 空间开辟大小是固定的。

2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道, 那数组的编译时开辟空间的方式就不能满足了。 这时候就只能试试动态存开辟了。


动态内存函数

malloc

void* malloc (size_t size);

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己 来决定。
  • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

free

void free (void* ptr);

free专门是用来做动态内存的释放和回收的

free函数用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptr 是NULL指针,则函数什么事都不做。

举个栗子:

malloc和free都声明在 stdlib.h 头文件中。

#include <stdio.h>
int main()
{
 //代码1
 int num = 0;
 scanf("%d", &num);
 int arr[num] = {0};
 //代码2
 int* ptr = NULL;
 ptr = (int*)malloc(num*sizeof(int));
 if(NULL != ptr)//判断ptr指针是否为空
 {
 int i = 0;
 for(i=0; i<num; i++)
 {
 *(ptr+i) = 0;
 }
 }
 free(ptr);//释放ptr所指向的动态内存
 ptr = NULL;//是否有必要?
 return 0;
}

calloc

void* calloc (size_t num, size_t size);
  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。
#include <stdio.h>
#include <stdlib.h>
int main()
{
 int *p = (int*)calloc(10, sizeof(int));
 if(NULL != p)
 {
 //使用空间
 }
 free(p);
 p = NULL;
 return 0;
}


realloc

  • realloc函数的出现让动态内存管理更加灵活。
  • 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时 候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小 的调整。
void* realloc (void*ptr, size_t size);
  • ptr 是要调整的内存地址
  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。

realloc在调整内存空间的是存在两种情况:

情况1:原有空间之后有足够大的空间

情况2:原有空间之后没有足够大的空间

 后面有足够的空间的话,还好。没有足够的空间的话,它会自己另外找足够的空间使用,地址将会改变。

情况1

当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

情况2

当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小 的连续空间来使用。这样函数返回的是一个新的内存地址。 由于上述的两种情况,realloc函数的使用就要注意一些。

举个栗子:

#include <stdio.h>
int main()
{
 int *ptr = (int*)malloc(100);
 if(ptr != NULL)
 {
     //业务处理
 }
 else
 {
     exit(EXIT_FAILURE);    
 }
 //扩展容量
 //代码1
 ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
 
 //代码2
 int*p = NULL;
 p = realloc(ptr, 1000);
 if(p != NULL)
 {
 ptr = p;
 }
 //业务处理
 free(ptr);
 return 0;
}

常见的动态内存错误

对NULL指针的解引用操作

void test()
{
 int *p = (int *)malloc(INT_MAX/4);
 *p = 20;//如果p的值是NULL,就会有问题
 free(p);
}

对动态开辟空间的越界访问

void test()
{
 int i = 0;
 int *p = (int *)malloc(10*sizeof(int));
 if(NULL == p)
 {
 exit(EXIT_FAILURE);
 }
 for(i=0; i<=10; i++)
 {
 *(p+i) = i;//当i是10的时候越界访问
 }
 free(p);
}

对非动态开辟内存使用free释放

void test()
{
 int a = 10;
 int *p = &a;
 free(p);//ok?
}

使用free释放一块动态开辟内存的一部分

void test()
{
 int *p = (int *)malloc(100);
 p++;
 free(p);//p不再指向动态内存的起始位置
}

对同一块动态内存多次释放

void test()
{
 int *p = (int *)malloc(100);
 free(p);
 free(p);//重复释放
}

动态开辟内存忘记释放(内存泄漏)

void test()
{
 int *p = (int *)malloc(100);
 if(NULL != p)
 {
 *p = 20;
 }
}
int main()
{
 test();
 while(1);
}


举几个栗子,Test函数的结果会怎么样?

void GetMemory(char *p)
{
 p = (char *)malloc(100);
}
void Test(void)
{
 char *str = NULL;
 GetMemory(str);
 strcpy(str, "hello world");
 printf(str);
}

char *GetMemory(void)
{
 char p[] = "hello world";
 return p;
}
void Test(void)
{
 char *str = NULL;
 str = GetMemory();
 printf(str);
}

void GetMemory(char **p, int num)
{
 *p = (char *)malloc(num);
}
void Test(void)
{
 char *str = NULL;
 GetMemory(&str, 100);
 strcpy(str, "hello");
 printf(str);
}

void Test(void)
{
 char *str = (char *) malloc(100);
 strcpy(str, "hello");
 free(str);
 if(str != NULL)
 {
 strcpy(str, "world");
 printf(str);
 }
}

C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是 分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返 回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分 配方式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。 

实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。 但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序 结束才销毁

所以生命周期变长。


柔性数组

C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

typedef struct st_type
{
 int i;
 int a[];//柔性数组成员
}type_a;

柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大 小,以适应柔性数组的预期大小。
//code1
typedef struct st_type
{
 int i;
 int a[0];//柔性数组成员
}type_a;
printf("%d\n", sizeof(type_a));//输出的是4
//代码1
int i = 0;
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
//业务处理
p->i = 100;
for(i=0; i<100; i++)
{
 p->a[i] = i;
}
free(p);

这样柔性数组成员a,相当于获得了100个整型元素的连续空间。

柔性数组的优势

上述的 type_a 结构也可以设计为:

//代码2
typedef struct st_type
{
 int i;
 int *p_a;
}type_a;
type_a *p = (type_a *)malloc(sizeof(type_a));
p->i = 100;
p->p_a = (int *)malloc(p->i*sizeof(int));
//业务处理
for(i=0; i<100; i++)
{
 p->p_a[i] = i;
}
//释放空间
free(p->p_a);
p->p_a = NULL;
free(p);
p = NULL;

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放 如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给 用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你 不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好 了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度. 连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得也没多高了,反正 你跑不了要用做偏移量的加法来寻址)


通讯录(动态内存化)

通讯录基础版(点击,看看!)

开辟空间

//Contact.h
//静态
//typedef struct Contact
//{
//	PeoInfo data[1000];//存放人的信息
//	int sz;//当前已存放信息的个数
//}Contact;
//动态 
typedef struct Contact
{
	PeoInfo* data;//指向存放人的信息
	int sz;//当前已存放信息的个数
	int  capacity;//当前通讯录最大容量
}Contact;

初始化通讯录

//静态
//Contact.c
//void InitContact(Contact* pc)
//{
//	assert(pc);
//	pc->sz = 0;
//	memset(pc->data, 0, sizeof(pc->data));
//}
void InitContact(Contact* pc)
{
	assert(pc);
	pc->sz = 0;
	PeoInfo* ptr = (PeoInfo*)calloc(sizeof(PeoInfo), DEFAULT_SZ);
	if (ptr == NULL)
	{
		perror("InitContact::calloc");
		return;
	}
	pc->data = ptr;
	pc->capacity = DEFAULT_SZ;
}

增加联系人(可能需要增容)

//void AddContact(Contact* pc)
//{
//	assert(pc);
//	if (pc->sz == 1000)
//	{
//		printf("通讯录已满,无法添加\n");
//		return;
//	}
//	//增加一个人的信息
//	printf("请输入名字:>");
//	scanf("%s", pc->data[pc->sz].name);
//	printf("请输入年龄:>");
//	scanf("%d", &(pc->data[pc->sz].age));
//	printf("请输入性别:>");
//	scanf("%s", pc->data[pc->sz].sex);
//	printf("请输入地址:>");
//	scanf("%s", pc->data[pc->sz].addr);
//	printf("请输入电话:>");
//	scanf("%s", pc->data[pc->sz].tele);
//	pc->sz++;
//}
void check_capacity(Contact* pc)
{
	if (pc->sz == pc->capacity)
	{
		//增加容量
		PeoInfo*ptr=(PeoInfo*)realloc(pc->data, (pc->capacity + 2) * sizeof(PeoInfo));
		if (ptr == NULL)
		{
			perror("check_capacity::realloc");
			return;
		}
		pc->data = ptr;
		pc->capacity += INC_SZ;
	}
}
void AddContact(Contact* pc)
{
	assert(pc);
	check_capacity(pc);
	if (pc->sz == pc->capacity)
	{
		//增加容量

	}
	//增加一个人的信息
	printf("请输入名字:>");
	scanf("%s", pc->data[pc->sz].name);
	printf("请输入年龄:>");
	scanf("%d", &(pc->data[pc->sz].age));
	printf("请输入性别:>");
	scanf("%s", pc->data[pc->sz].sex);
	printf("请输入地址:>");
	scanf("%s", pc->data[pc->sz].addr);
	printf("请输入电话:>");
	scanf("%s", pc->data[pc->sz].tele);
	pc->sz++;
}

销毁通讯录

//Contact.h
//销毁通讯录
void DestoryContact(Contact* pc);
删除所有联系人
//void DeaContact(Contact* pc);
//Contact.c
//void DeaContact(Contact* pc)
//{
//	assert(pc);
//	memset(pc->data, 0, sizeof(pc->data));
//	pc->sz == 0;
//	printf("清空成功!\n");
//
//}
void DestoryContact(Contact* pc)
{
	free(pc->data);
	pc->data = NULL;
	pc->sz = 0;
	pc = NULL;
}

记得还有test.c哦!


总结

最近的知识有些难以理解!越是不懂,那就越要能清楚,越要写成博客!

时间有些紧,最近有很多考试,文章还不够详细,以后复习的时候,文章会进行重做,框架是完整的,只是怕内容不够详细,不便于理解,非常抱歉,以后再次复习的时候进行优化!非常抱歉。


 宝子,你不点个赞吗?不评个论吗?不收个藏吗?

最后的最后,关注我,关注我,关注我,你会看到更多有趣的博客哦!!!

喵喵喵,你对我真的很重要。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/334416.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

seata分布式事务之AT模式实践代码

seata框架 AT模式&#xff1a; 先添加seata需要的数据库相关表&#xff0c;AT模式需要在每个业务所属库下建undo_log表&#xff0c;用来回滚的&#xff0c;出错seata就会从这个表生成反向sql回退数据 建表语句&#xff1a; SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0; -…

持续集成Jenkins (四)Jenkins+git+maven项目构建、自动化部署

GIT配置1.1 前言&#xff1a;需要安装 git 客户端.yum install git1.2 Jenkins 配置插件 Git 在仪表盘选择Manage Jenkins>>Plugin Manager>>进入如下页面&#xff0c;可以选择可选的插件&#xff0c;安装完成后的插件在installed里面可以看到&#xff0c;我这里已…

DataFrame与Spark SQL的由来

文章目录DataFrame与Spark SQL的由来RDD 之殇&#xff1a;优化空间受限DataFrame 横空出世幕后英雄&#xff1a;Spark SQL基于 DataFrame&#xff0c;Spark SQL 是如何进行优化的Catalyst 优化器TungstenDataFrame与Spark SQL的由来 Spark 已经有了 RDD 这个开发入口&#xff…

市场最快图表:LightningChart .NET v.10.4.1 Crack

LightningChart .NET v.10.4.1 已经发布&#xff01; 新功能、新自定义控件和性能改进 DataCursor&#xff1a;图表中自动数据跟踪的新功能。 在以前的版本中&#xff0c;LightningChart .NET 提供了不同的工具来实现数据跟踪功能&#xff0c;但是这些需要用户进行一些额外的编…

Python-第一天 安装Python和PyCharm

Python-第一天 安装Python和PyCharm一、安装Python1. 下载2. 安装3.验证是否安装成功二、安装和配置PyCharm工具1.下载2.安装3.创建工程4.配置4.1 修改主题4.2 修改默认字体和大小4.3 通过快捷键快速设置字体大小4.4 汉化软件4.5 其它插件4.6 常用快捷建一、安装Python 1. 下载…

计算机图形学02:中点BH算法绘制直线

作者&#xff1a;非妃是公主 专栏&#xff1a;《计算机图形学》 博客地址&#xff1a;https://blog.csdn.net/myf_666 个性签&#xff1a;顺境不惰&#xff0c;逆境不馁&#xff0c;以心制境&#xff0c;万事可成。——曾国藩 文章目录专栏推荐专栏系列文章序一、算法原理二、缺…

计算机科学基础知识第二节讲义

课程链接 运行环境&#xff1a;WSL Ubuntu OMZ终端 PS&#xff1a;看到老师终端具有高亮和自动补全功能&#xff0c;我连夜肝出oh-my-zsh安装教程&#xff0c;实现了此功能。 这节课主要讲变量的语法、控制流程、shell功能等内容。 修改终端用户名&#xff0c;输入密码后重启…

全国青少年编程等级考试scratch三级真题2022年9月(含题库答题软件账号)

青少年编程等级考试scratch真题答题考试系统请点击电子学会-全国青少年编程等级考试真题Scratch一级&#xff08;2019年3月&#xff09;在线答题_程序猿下山的博客-CSDN博客_小航答题助手1运行下列程序后&#xff0c;结果为120的是&#xff1f;&#xff08; &#xff09;A.B.C…

英语学习:每日翻译

World in a dish盘中知世界 1 How to eat to 100 如何吃到100岁 2 Dan Buettner’s book explores America’s healthiest cuisines 丹比特纳的书探索了美国最健康的美食 注意&#xff1a; 1 cuisines 美食3 Nearly 70% of American adults are overweight; over a thir…

python接口自动化(十)--post请求四种传送正文方式(详解)

简介 post请求我在python接口自动化&#xff08;八&#xff09;--发送post请求的接口&#xff08;详解&#xff09;已经讲过一部分了&#xff0c;主要是发送一些较长的数据&#xff0c;还有就是数据比较安全等。我们要知道post请求四种传送正文方式首先需要先了解一下常见的四种…

游戏服务器性能测试分析实战

今天遇到一个性能压测的问题&#xff0c;也是很多同学做游戏服务器开发经常会遇到的&#xff0c;今天记录一下分享给大家。 性能压测遇到的问题 对啦&#xff01;这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白&#xff0c;也有一些正在从事游戏开发的技术大…

Prometheus node_exporter 部署

Prometheus node_exporter 安装包下载 Prometheus 官网下载地址 包含Prometheus软件及各种exporter插件 node_exporter1.4.0安装包 解压安装 tar -xvf node_exporter-1.4.0.linux-amd64.tar.gz注册服务 可参考 linux 自定义服务 vi /etc/init.d/promethues#!/bin/bash …

python selenium浏览器复用技术

使用selenium 做web自动化的时候&#xff0c;经常会遇到这样一种需求&#xff0c;是否可以在已经打开的浏览器基础上继续运行自动化脚本&#xff1f; 这样前面的验证码登录可以手工点过去&#xff0c;后面页面使用脚本继续执行&#xff0c;这样可以解决很大的一个痛点。 命令行…

Spring 5

文章目录传统JavaWeb开发的困惑IoC、DI和Aop思想提出Spring框架的诞生Spring 框架概述Spring 框架历史Spring Framework技术栈图示BeanFactory 快速入门基于xml的Spring应用基于注解的Spring应用传统JavaWeb开发的困惑 IoC、DI和Aop思想提出 Spring框架的诞生 Spring 框架概述 …

Ansys Lumerical | 纳米线栅偏振器仿真应用

说明 由亚波长金属光栅&#xff08;纳米线栅偏振器&#xff09;组成的高对比度偏振控制器件正在取代体光学元件。纳米线栅偏振器提供了较好的消光比对比度、最小的吸收以解决高亮度照明&#xff0c;以及紧凑的形状以便于大规模制造和集成在小型光学器件中。然而&#xff0c;纳米…

代谢组学Nature子刊!抑郁症居然“男女有别”,脑膜淋巴管起关键作用!

文章标题&#xff1a;A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice 发表期刊&#xff1a;Nature Communications 影响因子&#xff1a;17.694 发表时间&#xff1a;2022年8月 作者单位&#xff1a;中山大学中山医学院 …

三层交换机【实验】

目录 1、要求&#xff1a; 2、拓扑&#xff1a; 3、创建vlan和端口定义并划入vlan&#xff1a; 4、创建以太网中继Eth-Trunk使sw1和sw2的相互冗余并且不浪费链路&#xff1a; 5、使用mstp定义组和对应的根&#xff1a; 6、配置网关冗余&#xff1a; 7、核心层的路由的IP配…

基于蜣螂算法改进的DELM分类-附代码

蜣螂算法改进的深度极限学习机DELM的分类 文章目录蜣螂算法改进的深度极限学习机DELM的分类1.ELM原理2.深度极限学习机&#xff08;DELM&#xff09;原理3.蜣螂算法4.蜣螂算法改进DELM5.实验结果6.参考文献7.Matlab代码1.ELM原理 ELM基础原理请参考&#xff1a;https://blog.c…

为什么越来越多的团队选择放弃Jira?有哪些替代产品?

国产类似Jira 的软件包括&#xff1a;1.一站式研发项目管理软件 PingCode&#xff1b;2.通用型项目协作工具 Worktile&#xff1b;3.开源项目管理软件 Redmine&#xff1b;4.免费项目管理软件 Trello&#xff1b;5.无代码项目管理软件 Moday&#xff1b;6.小团队项目管理软件 T…

《嵌入式 – GD32开发实战指南》第22章 SPI

开发环境&#xff1a; MDK&#xff1a;Keil 5.30 开发板&#xff1a;GD32F207I-EVAL MCU&#xff1a;GD32F207IK 22.1 SPI简介 SPI&#xff0c;是Serial Peripheral interface的缩写&#xff0c;顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的…