《嵌入式 – GD32开发实战指南》第22章 SPI

news2025/6/8 22:48:52

开发环境:
MDK:Keil 5.30
开发板:GD32F207I-EVAL
MCU:GD32F207IK

22.1 SPI简介

SPI,是Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。是一种高速全双工的通信总线,它由摩托罗拉公司提出,当前最新的为 V04.01—2004 版。它被广泛地使用在ADC、LCD 等设备与 MCU 间通信的场合。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

22.1.1 SPI 信号线

SPI 包含 4 条总线,SPI 总线包含 4 条总线,分别为SS、SCK、MOSI、MISO。它们的作用介绍如下 :

1)SS ( Slave Select):片选信号线,当有多个 SPI 设备与 MCU 相连时,每个设备的这个片选信号线是与 MCU 单独的引脚相连的,而其他的 SCK、MOSI、MISO 线则为多个设备并联到相同的 SPI 总线上,见下图。当 SS 信号线为低电平时,片选有效,开始SPI 通信。

在这里插入图片描述

2)SCK (Serial Clock):时钟信号线,由主通信设备产生,不同的设备支持的时钟频率不一样,如 GD32 的 SPI 时钟频率最大为 f PCLK /2。

3)MOSI (Master Output, Slave Input):主设备输出 / 从设备输入引脚。主机的数据从这条信号线输出,从机由这条信号线读入数据,即这条线上数据的方向为主机到从机。

4)MISO(Master Input, Slave Output):主设备输入 / 从设备输出引脚。主机从这条信号线读入数据,从机的数据则由这条信号线输出,即在这条线上数据的方向为从机到主机。

22.1.2 SPI模式

SPI通信中可作为从机也可以作为主机,这取决于硬件设计和软件设置。

当器件作为主机时,使用一个IO引脚拉低相应从机的选择引脚(NSS),传输的起始由主机发送数据来启动,时钟(SCK)信号由主机产生。通过MOSI发送数据,同时通过MISO引脚接收从机发出的数据。
当器件作为从机时,传输在从机选择引脚(NSS)被主机拉低后开始,接收主机输出的时钟信号,在读取主机数据的同时通过MISO引脚输出数据。

根据 SPI 时钟极性(CKPL)和时钟相位(CKPH) 配置的不同,分为 4 种 SPI 模式。
时钟极性是指 SPI 通信设备处于空闲状态时(也可以认为这是 SPI 通信开始时,即SS 为低电平时),SCK 信号线的电平信号。CKPL=0 时, SCK 在空闲状态时为低电平,CKPL=1 时则相反。
时钟相位是指数据采样的时刻,当 CKPH =0 时,MOSI 或 MISO 数据线上的信号将会在 SCK 时钟线的奇数边沿被采样。当 CKPH=1 时,数据线在 SCK 的偶数边沿采样。

在这里插入图片描述

我们来分析这个 CKPH =0 的时序图。首先,由主机把片选信号线SS 拉低,即为图中的SS (O)时序,意为主机输出,SS (I)时序实际上也是SS 线信号,SS (I)时序表示从机接收到SS 片选被拉低的信号。
在SS 被拉低的时刻,SCK 分为两种情况,若我们设置为 CKPL=0,则 SCK 时序在这个时刻为低电平,若设置为 CKPL=1,则 SCK 在这个时刻为高电平。

无论 CKPL=0 还是=1,因为我们配置的时钟相位 CKPH =0,在采样时刻的时序中我们可以看到,采样时刻都是在 SCK 的奇数边沿(注意奇数边沿有时为下降沿,有时为上升沿)。因此,MOSI 和 MISO 数据线的有效信号在 SCK 的奇数边沿保持不变,这个信号将在SCK 奇数边沿时被采集,在非采样时刻,MOSI 和 MISO 的有效信号才发生切换。

对于 CKPH =1 的情况也很类似,但数据信号的采样时刻为偶数边沿。使用 SPI 协议通信时,主机和从机的时序要保持一致,即两者都选择相同的 SPI 模式。

22.1.3 SPI特性

GD32的小容量有一个SPI接口,中容量有2个,大容量有3个接口,其特性如下所示。

 具有全双工和单工模式的主从操作;
 16位宽度,独立的发送和接收缓冲区;
 8位或16位数据帧格式;
 低位在前或高位在前的数据位顺序;
 软件和硬件NSS管理;
 硬件CRC计算、发送和校验;
 发送和接收支持DMA模式;
 支持SPI四线功能的主机模式(只有SPI0)。

22.2 SPI架构

下图所示为GD32的 SPI 架构图,可以看到 MISO 数据线接收到的信号经移位寄存器处理后把数据转移到接收缓冲区,然后这个数据就可以由我们的软件从接收缓冲区读出了。

在这里插入图片描述

当要发送数据时,我们把数据写入发送缓冲区,硬件将会把它用移位寄存器处理后输出到 MOSI 数据线。

SCK 的时钟信号则由波特率发生器产生,我们可以通过波特率控制位(PSC)来控制它输出的波特率。

控制寄存器 CTL0掌管着主控制电路,GD32的 SPI 模块的协议设置(时钟极性、相位等)就是由它来制定的。而控制寄存器 CTL1则用于设置各种中断使能。

最后为 NSS 引脚,这个引脚扮演着 SPI 协议中的SS 片选信号线的角色,如果我们把 NSS 引脚配置为硬件自动控制,SPI 模块能够自动判别它能否成为 SPI 的主机,或自动进入 SPI 从机模式。但实际上我们用得更多的是由软件控制某些 GPIO 引脚单独作为SS信号,这个 GPIO 引脚可以随便选择。
通常SPI通过4个引脚与外部器件相连:

● MISO:主设备输入/从设备输出引脚。该引脚在从模式下发送数据,在主模式下接收数据。
● MOSI:主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。
● SCK: 串口时钟,作为主设备的输出,从设备的输入。
● NSS: 从设备选择。这是一个可选的引脚,用来选择主/从设备。它的功能是用来作为“片选引脚”,让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。从设备的NSS引脚可以由主设备的一个标准I/O引脚来驱动。

22.3 SPI工作原理

22.3.1 (NSS)输入输出管理

 (NSS)输出管理
对于每个SPI的NSS可以输入,也可以输出。所谓输入,就是NSS的电平信号给自己,所谓输出,就是将NSS的电平信号发送出去,给从机。配置为输出,还是不输出,我们可以通过SPI_CTL1寄存器的NSSDRV位。当NSSDRV=1时,并且SPI处于主模式控制时(MSTMOD=1),NSS就输出低电平,也就是拉低,因此当其他SPI设备的NSS引脚与它相连,必然接收到低电平,则片选成功,都成为从设备了。

 (NSS)输入管理
NSS软件模式:
 SPI主机:
需要设置SPI_CTL0寄存器的SWNSSEN=1和SWNSS=1,SWNSSEN=1是为了使能软件管理,NSS有内部和外部引脚。这时候外部引脚留作他用(可以用来作为GPIO驱动从设备的片选信号)。内部NSS引脚电平则通过SPI_CTL0寄存器的SWNSS位来驱动。SWNSS=1是为了使NSS内电平为高电平。为什么主设备的内部NSS电平要为1呢?
GD32手册上说,要保持MSTMOD=1和SPIEN=1,也就是说要保持主机模式,只有NSS接到高电平信号时,这两位才能保持置‘1’。
 SPI从机:
NSS引脚在完成字节传输之前必须连接到一个低电平信号。在软件模式下,则需要设置SPI_CR1寄存器的SWNSSEN=1(软件管理使能)和SWNSS=0.
NSS硬件模式:
对于主机,我们的NSS可以直接接到高电平.对于从机,NSS接低就可以。

22.3.2单主和单从应用

在这里插入图片描述

从上图可以看出,主机和从机都有一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节发起一次传输。寄存器通过MOSI信号将字节传给从机,从机也将自己的移位寄存器中的内容通过MISO信号返还给主机。这样,两个移位寄存器中下的内容就被交换,外设的写操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个,就必须发送一个空字节来引发从机的传输。

22.3.3时钟信号的相位和极性

SPI_CTL0寄存器的CKPL和CKPH位,能够组合成四种可能的时序关系。CKPL (时钟极性)位控制在没有数据传输时时钟的空闲状态电平,此位对主模式和从模式下的设备都有效。如果CKPL被清’0’,SCK引脚在空闲状态保持低电平;如果CKPL被置’1’,SCK引脚在空闲状态保持高电平。如果CKPH (时钟相位)位被置’1’,SCK时钟的第二个边沿(CPOL位为0时就是下降沿,CKPL位为’1’时就是上升沿)进行数据位的采样,数据在第二个时钟边沿被锁存。如果CKPH位被清’0’,SCK时钟的第一边沿(CPOL位为’0’时就是下降沿,CKPL位为’1’时就是上升沿)进行数据位采样,数据在第一个时钟边沿被锁存。
CKPL时钟极性和CKPH时钟相位的组合选择数据捕捉的时钟边沿。

22.3.4数据帧格式

根据SPI_CTL0寄存器中的LF位,输出数据位时可以MSB在先也可以LSB在先。根据SPI_CTL0寄存器的FF16位,每个数据帧可以是8位或是16位。所选择的数据帧格式对发送和/或接收都有效。

22.3.5 SPI主从模式工作原理

配置SPI主模式的步骤如下:

1.设置SPI_CTL0寄存器的PSC [2:0]位,来定义串行时钟波特率。
2.选择CKPL和CKPH位,定义数据传输和串行时钟间的相位关系。
3.设置FF16位来定义8或16位数据帧格式。
4.配置SPI_CTL0寄存器的LF位定义帧格式。
5.如果NSS引脚需要工作在输入模式,硬件模式中在整个数据帧传输期间应把NSS引脚连接到高电平;在软件模式中,需设置SPI_CTL0寄存器的SWNSSEN=1和SWNSS=1。如果NSS引脚工作在输出模式,则只需设置SSOE=1位。
6.设置MSTMOD=1和SPIEN=1,只当NSS引脚被连到高电平,这些位才能保持置位。

配置SPI从模式的步骤如下:

1.设置FF16位以定义数据帧格式为8位或16位。
2.定义数据传输和串行时钟之间的相位关系。
3.帧格式必须和主设备相同,MSB在前还是LSB在前取决于SPI_CTL0寄存器中的LF位。
4.硬件模式下,在完整的数据帧(8位或16位)发送过程中,NSS引脚必须为低电平。软件模式下,设置SPI_CTL0寄存器中的SWNSSEN=1,SWNSS=0。
5.MSTMOD=0位,设置SPIEN=1,使相应引脚工作于SPI模式下。

22.3.6状态标志

应用程序通过3个状态标志可以完全监控SPI总线的状态。
1.发送缓冲器空闲标志(TBE)
此标志为’1’时表明发送缓冲器为空,可以写下一个待发送的数据进入缓冲器中。当写入SPI_DATA时,TBE标志被清除。
2.接收缓冲器非空(RBNE)
此标志为’1’时表明在接收缓冲器中包含有效的接收数据。读SPI数据寄存器可以清除此标志。
3.忙(Busy)标志
TRANS标志由硬件设置与清除(写入此位无效果),此标志表明SPI通信层的状态。

22.3.7 SPI中断

SPI的相关中断标志如下:

中断事件事件标志使能控制位
发送缓冲器空标志TBETBEIE
接收缓冲器非空标志RBNERBNEIE
主模式失效事件CONFERRERRIE
溢出错误RXORERR
CRC错误标志CRCERR

22.4硬件连接

GD25Q16BS是兆易创新推出的一款 SPI 接口的 NOR Flash 芯片,其存储空间为 16Mbit,相当于2M 字节。

GD25Q16BS可以支持 SPI 的模式 0 和模式 3,也就是 CKPL=0/CKPH=0和CKPL=1/CKPH=1这两种模式。

GD25Q16BS芯片支持 standard spi,Dual/Quad I/O SPI。

GD25Q16BS的擦写周期多达5W 次,具有10年的数据保存期限,支持电压为1.65~3.6V,GD25Q16BS支持标准的 SPI,还支持双输出/四输出的 SPI,最大 SPI 时钟可以到133Mhz(双输出时相当于266Mhz,四输出时相当于532M)。

GD25Q16BS内部有一个“SPI Command & Control Logic”,可以通过 SPI 接口向其发送指令,从而执行相应操作。

【注】
①、Flash 写入数据时和 EEPROM 类似,不能跨页写入,一次最多写入一页,GD25Q16BS的一页是 256 字节。写入数据一旦跨页,必须在写满上一页的时候,等待 Flash 将数据从缓存搬移到非易失区,重新再次往里写。

②、Flash 有一个特点,就是可以将 1 写成 0,但是不能将 0 写成 1,要想将 0 写成 1,必须进行擦除操作。因此通常要改写某部分空间的数据,必须首先进行一定物理存储空间擦除,最小的擦除空间,通常称之为扇区,扇区擦除就是将这整个扇区每个字节全部变成 0xFF。
我的开发板选用的Flash是GD25Q16BS,容量为2M,挂载在SPI0上,如下图所示。

在这里插入图片描述

22.5 SPI具体代码实现

首先是SPI的硬件初始化。

/*
   brief      initialize SPI1 GPIO and parameter
   param[in]  none
   param[out] none
   retval     none
*/
void spi_flash_init(void)
{
    spi_parameter_struct spi_init_struct;

    rcu_periph_clock_enable(RCU_GPIOA);
    rcu_periph_clock_enable(RCU_GPIOB);
    rcu_periph_clock_enable(RCU_AF);
    rcu_periph_clock_enable(RCU_SPI0);

    /* SPI0_CLK(PA5), SPI0_MISO_IO1(PA6), SPI0_MOSI_IO0(PA7) GPIO pin configuration */
    gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);
    /* SPI0_CS(PB1) GPIO pin configuration */
    gpio_init(GPIOB, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_1);

    /* chip select invalid */
    SPI_FLASH_CS_HIGH();

    /* SPI0 parameter config */
    spi_init_struct.trans_mode           = SPI_TRANSMODE_FULLDUPLEX; /*SPI receive and send data at fullduplex communication*/
    spi_init_struct.device_mode          = SPI_MASTER; /* SPI as master*/
    spi_init_struct.frame_size           = SPI_FRAMESIZE_8BIT; /* SPI frame size is 8 bits*/
    spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE; /*SPI clock polarity is low level and phase is first edge*/
    spi_init_struct.nss                  = SPI_NSS_SOFT; /* SPI NSS control by sofrware */
    spi_init_struct.prescale             = SPI_PSC_32;  /* SPI clock prescale factor is 32 */
    spi_init_struct.endian               = SPI_ENDIAN_MSB; /* SPI transmit way is big endian: transmit MSB first */
    spi_init(SPI0, &spi_init_struct);
    /* enable SPI0 */
    spi_enable(SPI0);
}

SPI的硬件初始化最重要的函数就是spi_init ()。

void spi_init(uint32_t spi_periph, spi_parameter_struct *spi_struct)

其中SPI参数配置的结构体为spi_parameter_struct;。

/* SPI and I2S parameter struct definitions */
typedef struct {
    uint32_t device_mode;                                                       /*!< SPI master or slave */
    uint32_t trans_mode;                                                        /*!< SPI transfer type */
    uint32_t frame_size;                                                        /*!< SPI frame size */
    uint32_t nss;                                                               /*!< SPI NSS control by hardware or software */
    uint32_t endian;                                                            /*!< SPI big endian or little endian */
    uint32_t clock_polarity_phase;                                              /*!< SPI clock phase and polarity */
    uint32_t prescale;                                                          /*!< SPI prescaler factor */
} spi_parameter_struct;

spi_parameter_struct结构体成员变量如下:

  • trans_mode用来设置 SPI 的通信方式,可以选择为半双工,全双工,以及串行发和串行收方式,这里设置的全双工(SPI_TRANSMODE_FULLDUPLEX)。
  • device_mode用来设置 SPI 的主从模式。SCK 的时序是由通讯中的主机产生的。若被配置为从机模式,GD32的 SPI 外设将接受外来的 SCK 信号。
  • frame_size为 8 位还是 16 位帧格式选择项。
  • clock_polarity_phase 用来设置时钟极性与设置时钟相位,就是选择在串行同步时钟的第几个跳变沿(上升或下降)数据被采样。
  • nss设置NSS 信号由硬件(NSS 管脚)还是软件控制。可以选择为硬件模式(SPI_NSS_HARD)与软件模式(SPI_NSS_SOFT),在硬件模式中的 SPI 片选信号由 SPI 硬件自动产生,而软件模式则需要我们亲自把相应的 GPIO 端口拉高或置低产生非片选和片选信号。实际中软件模式应用比较多。
  • prescale设置 SPI 波特率预分频值决定 SPI 的时钟的参数,从不分频道 256 分频 8 个可选值。2-156,凡是2的几次方都可以。
  • endian设置数据传输顺序是 MSB 位在前还是 LSB 位在前

SPI Flash的读写操作如下:

/*
   brief      read a byte from the SPI flash
   param[in]  none
   param[out] none
   retval     byte read from the SPI flash
*/
uint8_t spi_flash_read_byte(void)
{
    return(spi_flash_send_byte(DUMMY_BYTE));
}

/*
   brief      send a byte through the SPI interface and return the byte received from the SPI bus
   param[in]  byte: byte to send
   param[out] none
   retval     the value of the received byte
*/
uint8_t spi_flash_send_byte(uint8_t byte)
{
    /* loop while data register in not emplty */
    while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE));

    /* send byte through the SPI0 peripheral */
    spi_i2s_data_transmit(SPI0, byte);

    /* wait to receive a byte */
    while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE));

    /* return the byte read from the SPI bus */
    return(spi_i2s_data_receive(SPI0));
}

发送数据前要等待发送缓冲区为空,靠TBE标志判断,所以开始的while循环是等待发送缓冲区为空,同时,等待接收缓冲区是否有数据,靠RBNE标志来判断,把接收缓冲区的数据作为返回值返回。由于发送和接收是同时进行的,而且要接收一个数据时必须在有效的SCK下,而只有发送数据才能产生有效的SCK,所以接收数据的函数时在发送数据的函数的基础上,将发送的数据设置为Dummy_Byte假数据来骗取有效的SCK。

SPI Flash读写Buffer操作如下:

/*
   brief      write block of data to the flash
   param[in]  pbuffer: pointer to the buffer
   param[in]  write_addr: flash's internal address to write
   param[in]  num_byte_to_write: number of bytes to write to the flash
   param[out] none
   retval     none
*/
void spi_flash_buffer_write(uint8_t *pbuffer, uint32_t write_addr, uint16_t num_byte_to_write)
{
    uint8_t num_of_page = 0, num_of_single = 0, addr = 0, count = 0, temp = 0;

    addr          = write_addr % SPI_FLASH_PAGE_SIZE;
    count         = SPI_FLASH_PAGE_SIZE - addr;
    num_of_page   = num_byte_to_write / SPI_FLASH_PAGE_SIZE;
    num_of_single = num_byte_to_write % SPI_FLASH_PAGE_SIZE;

    /* write_addr is SPI_FLASH_PAGE_SIZE aligned */
    if(0 == addr)
    {
        /* num_byte_to_write < SPI_FLASH_PAGE_SIZE */
        if(0 == num_of_page)
        {
            spi_flash_page_write(pbuffer, write_addr, num_byte_to_write);
        }
        else
        {
            /* num_byte_to_write >= SPI_FLASH_PAGE_SIZE */
            while(num_of_page--)
            {
                spi_flash_page_write(pbuffer, write_addr, SPI_FLASH_PAGE_SIZE);
                write_addr += SPI_FLASH_PAGE_SIZE;
                pbuffer += SPI_FLASH_PAGE_SIZE;
            }
            spi_flash_page_write(pbuffer, write_addr, num_of_single);
        }
    }
    else
    {
        /* write_addr is not SPI_FLASH_PAGE_SIZE aligned */
        if(0 == num_of_page)
        {
            /* (num_byte_to_write + write_addr) > SPI_FLASH_PAGE_SIZE */
            if(num_of_single > count)
            {
                temp = num_of_single - count;
                spi_flash_page_write(pbuffer, write_addr, count);
                write_addr += count;
                pbuffer += count;
                spi_flash_page_write(pbuffer, write_addr, temp);
            }
            else
            {
                spi_flash_page_write(pbuffer, write_addr, num_byte_to_write);
            }
        }
        else
        {
            /* num_byte_to_write >= SPI_FLASH_PAGE_SIZE */
            num_byte_to_write -= count;
            num_of_page = num_byte_to_write / SPI_FLASH_PAGE_SIZE;
            num_of_single = num_byte_to_write % SPI_FLASH_PAGE_SIZE;

            spi_flash_page_write(pbuffer, write_addr, count);
            write_addr += count;
            pbuffer += count;

            while(num_of_page--)
            {
                spi_flash_page_write(pbuffer, write_addr, SPI_FLASH_PAGE_SIZE);
                write_addr += SPI_FLASH_PAGE_SIZE;
                pbuffer += SPI_FLASH_PAGE_SIZE;
            }

            if(0 != num_of_single)
            {
                spi_flash_page_write(pbuffer, write_addr, num_of_single);
            }
        }
    }
}

/*
   brief      read a block of data from the flash
   param[in]  pbuffer: pointer to the buffer that receives the data read from the flash
   param[in]  read_addr: flash's internal address to read from
   param[in]  num_byte_to_read: number of bytes to read from the flash
   param[out] none
   retval     none
*/
void spi_flash_buffer_read(uint8_t *pbuffer, uint32_t read_addr, uint16_t num_byte_to_read)
{
    /* select the flash: chip slect low */
    SPI_FLASH_CS_LOW();

    /* send "read from memory " instruction */
    spi_flash_send_byte(READ);

    /* send read_addr high nibble address byte to read from */
    spi_flash_send_byte((read_addr & 0xFF0000) >> 16);
    /* send read_addr medium nibble address byte to read from */
    spi_flash_send_byte((read_addr & 0xFF00) >> 8);
    /* send read_addr low nibble address byte to read from */
    spi_flash_send_byte(read_addr & 0xFF);

    /* while there is data to be read */
    while(num_byte_to_read--)
    {
        /* read a byte from the flash */
        *pbuffer = spi_flash_send_byte(DUMMY_BYTE);
        /* point to the next location where the byte read will be saved */
        pbuffer++;
    }

    /* deselect the flash: chip select high */
    SPI_FLASH_CS_HIGH();
}

主函数代码如下:

/*
    brief      main function
    param[in]  none
    param[out] none
    retval     none
*/
int main(void)
{
    //systick init
    sysTick_init();

    // led init
    led_init(LED1);

    //usart init 115200 8-N-1
    com_init(COM1, 115200, 0, 1);

    /* configure SPI and parameter */
    spi_flash_init();

    /* GD32207i-EVAL start up */
    printf("\n\rGD32207i-EVAL System is Starting up...\n\r");
    printf("\n\rGD32207i-EVAL Flash:%dK\n\r", *(__IO uint16_t *)(0x1FFFF7E0));
   /* get chip serial number */
    get_chip_serial_num();

    /* printf CPU unique device id */
    printf("\n\rGD32207i-EVAL The CPU Unique Device ID:[%X-%X-%X]\n\r", int_device_serial[2], int_device_serial[1], int_device_serial[0]);

    printf("\n\rGD32207i-EVAL SPI Flash:GD25Q16 configured...\n\r");

    /* get flash id */
    flash_id = spi_flash_read_id();
    printf("\r\nThe Flash_ID:0x%X\r\n", flash_id);

    /* flash id is correct */
    if(SFLASH_ID == flash_id)
    {
        printf("\n\rWrite to tx_buffer:\r\n");

        /* printf tx_buffer value */
        for(i = 0; i < BUFFER_SIZE; i++) 
        {
            tx_buffer[i] = i;
            printf("0x%02X ", tx_buffer[i]);

            if(15 == i % 16)
            {
                printf("\n\r");
            }
        }

        printf("\r\nRead from rx_buffer:\r\n");

        /* erase the specified flash sector */
        spi_flash_sector_erase(FLASH_WRITE_ADDRESS);

        /* write tx_buffer data to the flash */
        spi_flash_buffer_write(tx_buffer, FLASH_WRITE_ADDRESS, 256);

        delay_ms(10);
        /* read a block of data from the flash to rx_buffer */
        spi_flash_buffer_read(rx_buffer, FLASH_READ_ADDRESS, 256);   
        /* printf rx_buffer value */
        for(i = 0; i < BUFFER_SIZE; i ++)
        {
            printf("0x%02X ", rx_buffer[i]);
            if(15 == i % 16)
            {
                printf("\n\r");
            }
        }

        if(ERROR == memory_compare(tx_buffer, rx_buffer, 256)) {
            printf("\n\rErr:Data Read and Write aren't Matching.\n\r");
            is_successful = 1;
        }

        /* spi qspi flash test passed */
        if(0 == is_successful)
        {
            printf("\n\rSPI-GD25Q16 Test Passed!\n\r");
        }
    }
    else
    {
        /* spi flash read id fail */
        printf("\n\rSPI Flash: Read ID Fail!\n\r");
    }

    while(1)
    {
        led_toggle(LED1);
        delay_ms(1000);
    }
}

首先对SPI进行初始化,然后就极性FLASH的读取,完整代码请参看源码。

22.6实验现象

在电脑端打开串口调试助手工具,设置参数为115200 8-N-1。下载完程序之后,在串口调试助手窗口可接收到信息。

在这里插入图片描述



欢迎访问我的网站

BruceOu的哔哩哔哩
BruceOu的主页
BruceOu的博客
BruceOu的CSDN博客
BruceOu的知乎


资源获取方式

1.关注公众号[嵌入式实验楼]
2.在公众号回复关键词[GD32开发实战指南]获取资料提取码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/334381.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git修改已有仓库的默认分支并删除其他分支

Git仓库中有一个分支没有用&#xff0c;打算删除掉&#xff0c;查找解决办法&#xff0c;儒雅的烤地瓜 的一篇博客1很详细&#xff0c;我按照他的第三点命令敲入&#xff0c;结果出现报错。 查看博客在git push origin --delete main 这条命令前说了&#xff1a;要删除的分支可…

SAS应用入门学习笔记4

分组和排序&#xff1a; By 语句&#xff1a; 1&#xff09;使用sort过程对观测进行排序&#xff1a; proc sort data输入数据集 <out输出数据集> <其他选项>; # 如果有out&#xff0c;那么原有数据集不变&#xff1b; by 变量列表; # 可以加一个变量或两个…

Swagger3 API接口文档规范课程(内含教学视频+源代码)

Swagger3 API接口文档规范课程&#xff08;内含教学视频源代码&#xff09; 教学视频源代码下载链接地址&#xff1a;https://download.csdn.net/download/weixin_46411355/87431932 目录Swagger3 API接口文档规范课程&#xff08;内含教学视频源代码&#xff09;教学视频源代…

aws cloudformation 使用CommandRunner在堆栈中运行脚本

参考资料 Running bash commands in AWS CloudFormation templates 如何使用 AWSUtility::CloudFormation::CommandRunner 在 CloudFormation 堆栈中的资源之前或之后运行命令&#xff1f; 由于cloudformation语法和资源的限制&#xff0c;有些场景下我们可能会希望执行一些…

Mysql安装前的脚本准备

文章目录1. 将modules解压后放到Share共享文件夹中&#xff0c;将Share下的modules移动到根目录2. 将setup.sh放到Share共享文件夹中&#xff0c;通过共享将Share下的setup.sh移动到/Desktop3. 到/根目录下查看modules是否移动成功4. 到/root/Desktop下查看setup.sh5. 执行 ./s…

计算系统概论实验Lab 6——C重写Lab1-5

Lab 6 C重写Lab1-5 Purpose 使用高级编程语言&#xff08;例如C / C&#xff09;来实现以前编写的所有代码。请注意&#xff0c;该算法需要与之前使用的算法一致 condition&#xff1a; 明确禁止使用LC3不直接支持的*、/、%>><<等操作及等效库函数;可以使用&am…

Cypress简介及在Windows下安装

cypress 简单介绍 Cypress 是基于 JavaScript 的前端测试工具&#xff0c;它是自集成的&#xff0c;提供了一套完整的端到端测试&#xff0c;无须借助其他外部工具&#xff0c;安装后即可快速地创建、编写、运行测试用例&#xff0c;可以对浏览器中运行的任何内容进行快速、简…

springboot 针对rabbitmq多vhost情况处理

目录说明代码自定义rabbitmq的pom信息&#xff1a;重写one的连接工厂重写two的连接工厂&#xff1a;创建队列、交换机并绑定&#xff1a;消费者消费消息生产者发送消息说明 需求场景&#xff1a; 项目中在已接入rabbitmq一个vhost的基础上&#xff0c;需要再引入多个vhost进行…

线性杂双功能peg化试剂——HS-PEG-COOH,Thiol-PEG-Acid

英文名称&#xff1a;HS-PEG-COOH&#xff0c;Thiol-PEG-Acid 中文名称&#xff1a;巯基-聚乙二醇-羧基 HS-PEG-COOH是一种含有硫醇和羧酸的线性杂双功能聚乙二醇化试剂。它是一种有用的带有PEG间隔基的交联或生物结合试剂。巯基或SH、巯基或巯基选择性地与马来酰亚胺、OPSS、…

基于“python+”潮汐、风驱动循环、风暴潮等海洋水动力模拟实践技术

ADCIRC是新一代海洋水动力计算模型&#xff0c;它采用了非结构三角形网格广义波动连续方程的设计&#xff0c;在提高计算精确度的同时还减小了计算时间。被广泛应用于&#xff1a;模拟潮汐和风驱动的循环、预测风暴潮和洪水和近岸海上作业等。除此之外&#xff0c;ADCIRC也是我…

MySQL 存储引擎

MySQL内部展示图 分为三个层次 客户端 mysqlserver 存储引擎 我认为与之前先的UBD三层相类似 UI端传数据 B端逻辑处理 数据库端进行执行方面进行类似 存储引擎的分类 mySQL 5.5 版本采用InnoDB 为默认引擎&#xff08;生成.frm和.ibd文件&#xff09; 给大家介绍其他存储引…

I/O多路复用

基础概念 Socket 套接字。百科&#xff1a;对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。 例子1&#xff1a;客户端将数据通过网线发送到服务端&#xff0c;客户端发送数据需要一个出口&#xff0c;服务端接收数据需要一个入口&#xff0c;这两个“口子”就是…

【面试题】2023 Vue面试题 高频考题

大厂面试题分享 面试题库 后端面试题库 (面试必备) 推荐:★★★★★ 地址:

【微服务】Elasticsearch数据聚合自动补全数据同步(四)

&#x1f697;Es学习第四站~ &#x1f6a9;Es学习起始站&#xff1a;【微服务】Elasticsearch概述&环境搭建(一) &#x1f6a9;本文已收录至专栏&#xff1a;微服务探索之旅 &#x1f44d;希望您能有所收获 在第二站的学习中&#xff0c;我们已经导入了大量数据到es中&…

IBM AIX 升级Openssh 实现篇(编译安装)

升级成功佐证 !!!本文所有内容仅作参考,请在测试环境中具体测试完毕后才能应用于生产环境!!! [1]备份和恢复方案 开启telnet 服务,防止ssh 掉线后无法重连维护。在修复漏洞后关闭telnet。 备份该服务相关的所有文件,以便恢复。 root@TEST:/etc# vi inetd.conf #ftp…

原型图设计软件哪个好用?6款好用软件推荐

原型图软件列表 1、墨刀-极简超快的移动应用原型工具 2、ProcessOn-在线作图工具&#xff0c;你不用装 Visio 了 3、摩客-简洁高效的原型图设计工具 4、xiaopiu-国内优雅高效的在线 APP 原型工具 5、Axure-老牌原型工具&#xff0c;8.0 开始对响应式设计做了更好的支持&…

ONES 支持多项信创适配,打造自主可控的国产化平台

近日&#xff0c;ONES 顺利通过麒麟软件 NeoCertify、华为鲲鹏技术、达梦数据库的兼容性测试认证&#xff0c;至此&#xff0c;ONES 已完成国产操作系统、国产 CPU、国产数据库的多维度适配&#xff0c;成为目前唯一支持信创的研发管理平台&#xff0c;这标志着 ONES 在自主可控…

聚类分析--基本原理、方法(Kmeans,层次聚类)

文章目录聚类分析的定义基本原理商业应用场景聚类分析步骤聚类分析方法层次分析法/系统聚类法&#xff08;小样本&#xff09;提问&#xff1a;如何选择合适的分类结果K-means疑问&#xff1a;聚类分析的定义 聚类分析就是将研究对象根据一些特征指标&#xff0c;把比较相似的…

ubuntu qt程序无法输入中文 QLineEdit输入框无法切换输入法

目录一、问题描述二、解决思路三、步骤描述一、问题描述 测试软件在运行时无法通过键盘快捷键切换中文输入法&#xff0c;主要原因为qt应用程序没成功加载到输入法插件。 本文的以测试程序demo为例&#xff0c;进行过程展示&#xff0c;demo名字为“test-chinese-lineedit”。…

stream流处理初识

stream流处理初识 java8中的集合支持stream方法, 它会返回一个流(java.util.stream.Stream)IDEA集成的工具查看流式链过程&#xff1a; 流的操作 &#xff1a; 流的概念&#xff1a; java8中的集合支持stream方法,它会返回一个流(java.util.stream.Stream) 元素序列: 就像集…