MPLS-EVPN笔记详述

news2025/7/22 5:51:00

目录

EVPN简介:

EVPN路由:

基本四种EVPN路由

扩展:

EVPN工作流程:

1.启动阶段:

2.流量转发:

路由次序整理:

总结:

EVPN基本术语:

EVPN表项:

EVPN支持的多种服务模式:

简介:

1.Port Based:

简介:

配置实现:

2.VLAN Based:

简介:

配置实现:

3.VLAN Bundle:

简介:

配置实现:

VLAN-Aware Bundle:

简介:

MPLS-EVPN配置实施:

1.三层EVPN:

topo:

配置:

测试:

二层双活EVPN:

topo:

配置:

测试:

拓展:

EVPN在数据中心(DC)的应用:

EVPN在SD-WAN的应用:


EVPN简介:

·EVPN颠覆了传统L2VPN转发层面/数据层面学习MAC的方式,引入控制层面学习MAC和IP指导数据转发,实现了转控分离

·EVPN解决了L2VPN的典型问题,实现双活、快速收敛、简化运维等特性

·EVPN的控制平面采用MP-BGP(多协议BGP),数据平面支持多种类型的隧道,例如MPLS、GRE Tunnel、SRv6。

-数据平面:由IP隧道或MPLS标签转发路径组成数据转发路径。只负责数据转发,无需广播泛洪学习MAC地址

EVPN优势:

        ·支持CE双活接轨PE

        ·支持PE成员自动发现

        ·环路避免

        ·广播流量优化

        ·支持ECMP

EVPN路由:

随着RFC7432定义了EVPN的Type1 ~ Type4共4类路由,随着EVPN协议的发展,越来越多的路由被新定义,这里首先介绍EVPN四种类型的路由:

基本四种EVPN路由

(Type3)Inclusive Muticast Route集成组播路由:组播隧道端点自动发现&组播类型自动发现——支持BUM流量转发

(Type4)Ethernet Segment Route以太段路由:ES成员自动发现、DF(Designated Forwarder)选举——多活支持、单活支持

(Type1)Ethernet A-D(Autonomous-Discovery) Route 以太自动发现路由:别名、MAC地址批量撤销、多活指示、通告ESI标签——环路避免、快速收敛、负载分担

(Type2)MAC/IP Advertisement Route MAC/IP通告路由:MAC/IP地址学习通告、MAC/IP绑定、MAC地址移动性——ARP抑制、主机迁移

扩展:

Type5处于草案阶段

Type6 ~ Type11用于组播流量优化,标准还不成熟

EVPN工作流程:

EVPN的工作流程分为两个阶段:

1.启动阶段:

概述:

·EVPN对等体交互EVPN Type3路由(Inclusive Multicast Route,集成组播路由)建立BUM流量转发表

·EVPN对等体交互Type 4路由(Ethernet Segment Route,以太段路由)完成ES发现和DF选举(在ES多归属场景下才会进行DF选举,以防止PE收到两份重复的流量)

·EVPN交互Type 1路由(Ethernet A-D Route,以太自动发现路由),以交互ESI标签,进而实现水平分割、别名等功能

详述:

topo如图

1)BUM流量转发表:


    1.配置PE之间对等体(Peer)关系。以PE1为例,它将发送Type3路由(Inclusive Multicast Route)发现邻居并分配标签
    2.PE2、PE3生成BUM流量转发表
    3.这个过程中所有PE均发送Type 3路由(Inclusive Multicast Route),最终形成稳定的BUM流量转发表

在PE连接CE的接口配置ESI。PE会交换Type4路由(Ethernet Segment Route),传播ESI并进行DF选举

2)DF选举:

    1.当CE多归到多个PE时,只能有1个PE向CE转发BUM流量,选出这个PE的过程被称为DF选举
    2.PE通过特定算法选举出DF。本topo中假设PE1和PE3被选举为DF,则只允许PE1和PE3转发BUM流量给CE

3)分发ESI标签:

    1.水平分割:
        ·PE通过Type1路由(Ethernet A-D  Route)分发ESI标签。ESI label用于水平分割防止同一ES来的流量又绕回该ES
        ·此过程中所有PE均发送type1路由(Ethernet A-D Route),生成完整的ES成员信息表

启动阶段总结:

EVPN的启动阶段生成MAC-VRF、BUM流量转发表和ES成员信息表。此时MAC-VRF表项为空

2.流量转发:

概述:

·CE侧流量触发PE通过Type2路由(MAC/IP Advertisement Route)通告MAC/IP地址,该路由携带分配的标签信息,后续根据该标签执行单播流量转发

详述:

    ·EVPN流量转发阶段由CE侧用户流量发起开始
    ·用户CE1和CE2不感知PE设备的EVPN协议交互

topo:

    1)本地MAC地址学习:

        ·CE1访问CE2,首先发送ARP请求。PE1接收报文,生成本地MAC表条目

    2)MAC地址通告:

        1.PE1 EVPN将本地MAC地址条目生成Type2路由(MAC/IP Advertisement Route),携带PE1分配的标签301
        2.远端的PE设备通过MP-BGP学习到的EVPN路由,生成MAC表条目
        3.EVPN支持CE多活接入PE。PE2感知直连CE1,刷新最优的MAC表条目,并生成和通告Type2路由(MAC/IP Advertisement Route)    

    3)远端MAC地址学习:

         1.因PE1和PE2分配不同的MPLS标签,PE3有两条路径到达CE1

    4)ARP广播转发:

    ·CE1发送的ARP请求达到PE1。PE1通过转发面学习到CE1的MAC地址,然后通过Type2路由(MAC/IP Advertisement Route,MAC/IP 通告路由)发送给所有邻居

     ·控制平面行为完成后,PE1将执行转发平面行为,即转发ARP广播请求。最后因PE3为DF,PE3转发ARP广播报文到CE2
        1.PE1 to PE3:
            PE1到PE3的ARP报文查询BUM流量转发表转发,携带103标签。PE3为DF,转发报文到e1/0/1
        2.PE1 to PE2:
            ·由于PE1和PE2属于相同的ES,PE1到PE2的流量携带ESI标签202和BUM标签102。PE2接收到报文发现有标签202,则丢弃该报文
        3.PE3 to PE2

            ·PE3到PE2的流量携带BUM标签302,PE2根据标签确认是BUM流量,因PE2为非DF,丢弃报文

    5)ARP单播应答:

     

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2398540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无人机甲烷检测技术革新:开启环境与能源安全监测新时代

市场需求激增,技术革新势在必行 随着全球气候变化加剧,甲烷作为第二大温室气体,其减排与监测成为国际社会关注焦点。据欧盟甲烷法规要求,2024 年起欧洲能源基础设施运营商需定期测量甲烷排放并消除泄漏。与此同时,极端…

mysql数据库实现分库分表,读写分离中间件sharding-sphere

一 概述 1.1 sharding-sphere 作用: 定位关系型数据库的中间件,合理在分布式环境下使用关系型数据库操作,目前有三个产品 1.sharding-jdbc,sharding-proxy 1.2 sharding-proxy实现读写分离的api版本 4.x版本 5.x版本 1.3 说明…

普通二叉树 —— 最近公共祖先问题解析(Leetcode 236)

🏠个人主页:尘觉主页 文章目录 普通二叉树 —— 最近公共祖先问题解析(Leetcode 236)🧠 问题理解普通二叉树与 BST 的区别: 💡 解题思路关键思想:📌 举个例子&#xff1a…

Spring AOP:面向切面编程 详解代理模式

文章目录 AOP介绍什么是Spring AOP?快速入门SpringAop引入依赖Aop的优点 Spring Aop 的核心概念切点(Pointcut)连接点、通知切面通知类型PointCut注解切面优先级Order切点表达式executionwithinthistargetargsannotation自定义注解 Spring AOP原理代理模式&#xff…

零知开源——STM32F407VET6驱动ILI9486 TFT显示屏 实现Flappy Bird游戏教程

简介 本教程使用STM32F407VET6零知增强板驱动3.5寸 ILI9486的TFT触摸屏扩展板实现经典Flappy Bird游戏。通过触摸屏控制小鸟跳跃,躲避障碍物柱体,挑战最高分。项目涉及STM32底层驱动、图形库移植、触摸控制和游戏逻辑设计。 目录 简介 一、硬件准备 二…

数据安全中心是什么?如何做好数据安全管理?

目录 一、数据安全中心是什么 (一)数据安全中心的定义 (二)数据安全中心的功能 1. 数据分类分级 2. 访问控制 3. 数据加密 4. 安全审计 5. 威胁检测与响应 二、数据安全管理的重要性 三、如何借助数据安全中心做好数据安…

Monorepo 详解:现代前端工程的架构革命

以下是一篇关于 Monorepo 技术的详细技术博客,采用 Markdown 格式,适合发布在技术社区或团队知识库中。 🧩 深入理解 Monorepo:现代项目管理的利器 在现代软件开发中,项目规模日益庞大,模块之间的依赖关系…

16-前端Web实战(Tlias案例-部门管理)

在前面的课程中,我们学习了Vue工程化的基础内容、TS、ElementPlus,那接下来呢,我们要通过一个案例,加强大家对于Vue项目的理解,并掌握Vue项目的开发。 这个案例呢,就是我们之前所做的Tlias智能学习辅助系统…

电路学习(二)之电容

电容的基本功能是通交流隔直流、存储电量,在电路中可以进行滤波、充放电。 1.什么是电容? (1)电容定义:电容器代表了器件存储电荷的能力,通俗来理解是两块不连通的导体与绝缘的中间体组成。当给电容充电时…

CTA-861-G-2017中文pdf版

CTA-861-G标准(2016年11月发布)规范未压缩高速数字接口的DTV配置,涵盖视频格式、色彩编码、辅助信息传输等,适用于DVI、HDMI等接口,还涉及EDID数据结构及HDR元数据等内容。

港大NVMIT开源Fast-dLLM:无需重新训练模型,直接提升扩散语言模型的推理效率

作者:吴成岳,香港大学博士生 原文:https://mp.weixin.qq.com/s/o0a-swHZOplknnNxpqlsaA 最近的Gemini Diffusion语言模型展现了惊人的throughput和效果,但是开源的扩散语言模型由于缺少kv cache以及在并行解码的时候性能严重下降等…

ESP32-C3 Vscode+ESP-IDF开发环境搭建 保姆级教程

1.背景 最近esp32的芯片很火,因为芯片自带了WIFI和BLE功能,是物联网项目开发的首选芯片,所以,我也想搞个简单的esp32芯片试试看。于是,我设计了一个简单的板子。如下 这块板子很简单,主要的电路来自于乐鑫…

解决vscode打开一个单片机工程文件(IAR/keil MDK)因无法找到头文件导致的结构体成员不自动补全问题。

最近一直在用vscode安装c/c插件后编辑STM32标准库(keil MDK)项目源文件,因为我感觉vscode在代码编辑方面比keil MDK本身优秀太多。发现打开工程后,结构体变量的成员在输入“.”后不自己弹出的问题,后来查找各方资料&am…

【Node.js 深度解析】npm install 遭遇:npm ERR! code CERT_HAS_EXPIRED 错误的终极解决方案

目录 📚 目录:洞悉症结,精准施治 🔍 一、精准剖析:CERT_HAS_EXPIRED 的本质 🕵️ 二、深度溯源:证书失效的 N 重诱因 💡 三、高效解决策略:六脉神剑,招招…

Vue内置组件Teleport和Suspense

一. Vue内置组件Teleport 认识Teleport( teleport:允许我们把组件的模板渲染到特定的元素上) 1.1. 在组件化开发中,我们封装一个组件A,在另外一个组件B中使用 组件A中template的元素,会被挂载到组件B中template的某个位置&#xf…

Java网络编程实战:TCP/UDP Socket通信详解与高并发服务器设计

🔍 开发者资源导航 🔍🏷️ 博客主页: 个人主页📚 专栏订阅: JavaEE全栈专栏 内容: socket(套接字)TCP和UDP差别UDP编程方法使用简单服务器实现 TCP编程方法Socket和ServerSocket之间的关系使用简…

vue+threeJs 绘制3D圆形

嗨,我是小路。今天主要和大家分享的主题是“vuethreeJs 绘制圆形”。 今天找到一个用three.js绘制图形的项目,主要是用来绘制各种形状。 项目案例示意图 1.THREE.ShapeGeometry 定义:是 Three.js 中用于从 2D 路径形状&#xff08…

Silky-CTF: 0x02靶场

Silky-CTF: 0x02 来自 <Silky-CTF: 0x02 ~ VulnHub> 1&#xff0c;将两台虚拟机网络连接都改为NAT模式 2&#xff0c;攻击机上做namp局域网扫描发现靶机 nmap -sn 192.168.23.0/24 那么攻击机IP为192.168.23.128&#xff0c;靶场IP192.168.23.131 3&#xff0c;对靶机进…

Kafka 的优势是什么?

Kafka 作为分布式流处理平台的核心组件&#xff0c;其设计哲学围绕高吞吐、低延迟、高可扩展性展开&#xff0c;在实时数据管道和大数据生态中具有不可替代的地位。 一、超高吞吐量与低延迟 1. 磁盘顺序 I/O 优化 突破磁盘瓶颈&#xff1a;Kafka 将消息持久化到磁盘&#xff…

基于FPGA + JESD204B协议+高速ADC数据采集系统设计

摘 要&#xff1a; 针对激光扫描共聚焦显微镜的大视场、高分辨率需求&#xff0c;为在振镜扫描的时间内获取更多数据量&#xff0c;设计一种基 于 FPGA 的高速数据采集系统。该系统采用 Xilinx 的 A7 系列 FPGA 作为主控芯片&#xff0c;同时选用 TI 公司提供的 LM…