零知开源——STM32F407VET6驱动ILI9486 TFT显示屏 实现Flappy Bird游戏教程

news2025/6/6 3:16:58

简介

本教程使用STM32F407VET6零知增强板驱动3.5寸 ILI9486的TFT触摸屏扩展板实现经典Flappy Bird游戏。通过触摸屏控制小鸟跳跃,躲避障碍物柱体,挑战最高分。项目涉及STM32底层驱动、图形库移植、触摸控制和游戏逻辑设计。

目录

简介

一、硬件准备

二、软件架构

三、代码解析

四、游戏机制

五、移植要点

六、常见问题解决

七、完整代码 & 资源——视频演示效果 


一、硬件准备

1.核心硬件
  • 零知增强板(主控:STM32F407VET6)

  • 3.5寸TFT直插扩展板(含ILI9486控制器 + XPT2046触摸芯片)

  • 直插连接说明:扩展板直接插入零知增强板,引脚自动对齐无需额外接线

2.关键芯片
  • W25Q64JVSIG:64MB SPI Flash(存储游戏素材)

  • XPT2046:电阻触摸屏控制器

3.硬件连接图

4.连接实物图 

 二、软件架构

核心库:
1. Adafruit_GFX        // 图形核心库
2. Adafruit_TFTLCD_16bit_STM32 // STM32专用TFT驱动
3. XPT2046_Touchscreen // 触摸驱动

游戏资源:
flappy_title.h    // 游戏标题图片
bird05.h          // 小鸟位图
pillar01.h        // 柱子位图
bottom_deco.h     // 地面装饰

 三、代码解析

1. 初始化设置 
void setup() {
  Serial.begin(9600);
  myGLCD.begin(0x9486); // 指定ILI9328控制器
  ts.begin();           // 初始化触摸
  
  // 校准触摸屏(示例中省略具体校准过程)
  myGLCD.fillScreen(WHITE);
  myGLCD.setTextSize(2);
  myGLCD.println("Calibration");
  
  // 游戏变量初始化
  highscore = 0;
  myGLCD.setRotation(1);  // 屏幕方向设置
  initiateGame();         // 启动游戏
}

 2. 游戏主循环
void loop() {
  // 触摸检测(控制小鸟跳跃)
  if (ts.touched() && !screenPressed) {
    p = ts.getPoint();
    x = p.y;  // 坐标转换(根据屏幕旋转)
    y = TFTWIDTH - p.x;
    fallRateInt = -10; // 负值使小鸟上升
  }
  
  // 游戏物理引擎(每50ms更新)
  if (millis()-prev_millis < 50) return;
  
  // 小鸟下落计算
  fallRate = tick*tick; 
  yB += int(fallRate/15); // 下落速度随时间增加
  
  // 碰撞检测
  if (xP在柱子范围内 && (小鸟撞到柱子)) gameOver();
  
  // 绘制游戏元素
  drawPilars(xP, yP); // 绘制移动的柱子
  drawBird(yB);       // 绘制小鸟
  drawScore();        // 显示分数
}

3. 关键函数 

drawBird(int y): 

void drawBird(int y) {
  // 使用位图绘制小鸟
  myGLCD.drawBitmap(BIRD_X, y, BIRD_BMP_X, BIRD_BMP_Y, bird);
  
  // 清除小鸟移动轨迹
  if (fallRateInt > 0) 
    myGLCD.fillRect(BIRD_X, y-fallRateInt, BIRD_BMP_X, fallRateInt, BIRD_BG);
}

drawPilars(int x, int y): 

void drawPilars(int x, int y) {
  // 绘制上下柱子
  myGLCD.drawBitmap(x, y-PILLAR_END_BMP_Y, PILLAR_END_BMP_X, PILLAR_END_BMP_Y, pillar_end);
  myGLCD.drawBitmap(x, y+PILLAR_GAP, PILLAR_END_BMP_X, PILLAR_END_BMP_Y, pillar_end);
  
  // 柱子主体(垂直填充)
  for (int i=0; i<PILLAR_BMP_X; i++) {
    myGLCD.drawFastVLine(x+i, 0, (y-PILLAR_END_BMP_Y), pillar[i]);
    myGLCD.drawFastVLine(x+i, y+PILLAR_GAP, (BOTTOM_AREA_Y-y-PILLAR_GAP), pillar[i]);
  }
}

gameOver(): 

void gameOver() {
  // 屏幕闪烁效果
  for (int i=0; i<10; i++) {
    myGLCD.invertDisplay(i&1);
    delay(100);
  }
  // 更新最高分
  if (score > highscore) highscore = score;
  initiateGame(); // 重启游戏
}

 四、游戏机制

物理系统

小鸟受重力影响:fallRate = tick²(下落速度随时间平方增加)

触摸时赋予上升速度:fallRateInt = -10

 难度递增
if ((score - lastSpeedUpScore) == 5) {
  movingRate++; // 柱子移动速度增加
  level++;
}
碰撞检测
// 边界检测
if (yB > (BOTTOM_AREA_Y-BIRD_BMP_Y) || yB < 0) gameOver();

// 柱子碰撞
if (xP在柱子X范围内 && (小鸟Y位置在柱子间隙外)) gameOver();

五、移植要点

屏幕适配
  • 修改myGLCD.begin(0x9486)中的控制器ID

  • 调整setRotation()匹配硬件安装方向

性能优化
  • 使用drawFastVLine替代位图绘制柱子主体

  • 局部刷新(只重绘移动区域)

 触摸校准
// 示例中的简化校准流程
myGLCD.fillRect(TFTWIDTH-10, 0, 10, 10, GREEN); // 提示点击右上角
myGLCD.fillRect(0, TFTHEIGHT-10, 10, 10, GREEN); // 提示点击左下角

六、常见问题解决

屏幕白屏
  • 检查控制器ID(使用tft.readID()获取实际值)

  • 确认3.3V/5V电源跳线帽设置

触摸不准确
  • setup()中增加触摸校准代码

  • 调整坐标转换公式(根据屏幕旋转方向)

游戏卡顿
  • 降低TIME_UNIT值(游戏刷新间隔)

  • 优化drawPilars()中的循环逻辑

 七、完整代码 & 资源

  • 项目下载地址

https://pan.baidu.com/s/1Ip-HDgoOaPtJcOVtbwfZyA?pwd=cpvf 提取码: cpvf 

  • 素材提取工具

https://sourceforge.net/projects/image2code/

  • 视频演示效果 

STM32F407VET6驱动Flappy Bird游戏


通过本教程,您已掌握STM32F4的图形显示、触摸交互和游戏逻辑实现。可尝试扩展功能如添加音效、设计更多关卡等。遇到问题欢迎在零知论坛提问:www.lingzhilab.com/http://www.lingzhilab.com/ 

✔✔

零知开源是一个真正属于国人自己的开源软硬件平台,在开发效率以及上手难度上超越了Arduino平台。
零知开源在软件方面提供了完整的学习教程和丰富示例代码,让不懂程序的工程师也能非常轻而易举的搭建电路来创作产品,测试产品。快来动手试试吧! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2398533.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据安全中心是什么?如何做好数据安全管理?

目录 一、数据安全中心是什么 &#xff08;一&#xff09;数据安全中心的定义 &#xff08;二&#xff09;数据安全中心的功能 1. 数据分类分级 2. 访问控制 3. 数据加密 4. 安全审计 5. 威胁检测与响应 二、数据安全管理的重要性 三、如何借助数据安全中心做好数据安…

Monorepo 详解:现代前端工程的架构革命

以下是一篇关于 Monorepo 技术的详细技术博客&#xff0c;采用 Markdown 格式&#xff0c;适合发布在技术社区或团队知识库中。 &#x1f9e9; 深入理解 Monorepo&#xff1a;现代项目管理的利器 在现代软件开发中&#xff0c;项目规模日益庞大&#xff0c;模块之间的依赖关系…

16-前端Web实战(Tlias案例-部门管理)

在前面的课程中&#xff0c;我们学习了Vue工程化的基础内容、TS、ElementPlus&#xff0c;那接下来呢&#xff0c;我们要通过一个案例&#xff0c;加强大家对于Vue项目的理解&#xff0c;并掌握Vue项目的开发。 这个案例呢&#xff0c;就是我们之前所做的Tlias智能学习辅助系统…

电路学习(二)之电容

电容的基本功能是通交流隔直流、存储电量&#xff0c;在电路中可以进行滤波、充放电。 1.什么是电容&#xff1f; &#xff08;1&#xff09;电容定义&#xff1a;电容器代表了器件存储电荷的能力&#xff0c;通俗来理解是两块不连通的导体与绝缘的中间体组成。当给电容充电时…

CTA-861-G-2017中文pdf版

CTA-861-G标准&#xff08;2016年11月发布&#xff09;规范未压缩高速数字接口的DTV配置&#xff0c;涵盖视频格式、色彩编码、辅助信息传输等&#xff0c;适用于DVI、HDMI等接口&#xff0c;还涉及EDID数据结构及HDR元数据等内容。

港大NVMIT开源Fast-dLLM:无需重新训练模型,直接提升扩散语言模型的推理效率

作者&#xff1a;吴成岳&#xff0c;香港大学博士生 原文&#xff1a;https://mp.weixin.qq.com/s/o0a-swHZOplknnNxpqlsaA 最近的Gemini Diffusion语言模型展现了惊人的throughput和效果&#xff0c;但是开源的扩散语言模型由于缺少kv cache以及在并行解码的时候性能严重下降等…

ESP32-C3 Vscode+ESP-IDF开发环境搭建 保姆级教程

1.背景 最近esp32的芯片很火&#xff0c;因为芯片自带了WIFI和BLE功能&#xff0c;是物联网项目开发的首选芯片&#xff0c;所以&#xff0c;我也想搞个简单的esp32芯片试试看。于是&#xff0c;我设计了一个简单的板子。如下 这块板子很简单&#xff0c;主要的电路来自于乐鑫…

解决vscode打开一个单片机工程文件(IAR/keil MDK)因无法找到头文件导致的结构体成员不自动补全问题。

最近一直在用vscode安装c/c插件后编辑STM32标准库&#xff08;keil MDK&#xff09;项目源文件&#xff0c;因为我感觉vscode在代码编辑方面比keil MDK本身优秀太多。发现打开工程后&#xff0c;结构体变量的成员在输入“.”后不自己弹出的问题&#xff0c;后来查找各方资料&am…

【Node.js 深度解析】npm install 遭遇:npm ERR! code CERT_HAS_EXPIRED 错误的终极解决方案

目录 &#x1f4da; 目录&#xff1a;洞悉症结&#xff0c;精准施治 &#x1f50d; 一、精准剖析&#xff1a;CERT_HAS_EXPIRED 的本质 &#x1f575;️ 二、深度溯源&#xff1a;证书失效的 N 重诱因 &#x1f4a1; 三、高效解决策略&#xff1a;六脉神剑&#xff0c;招招…

Vue内置组件Teleport和Suspense

一. Vue内置组件Teleport 认识Teleport( teleport&#xff1a;允许我们把组件的模板渲染到特定的元素上) 1.1. 在组件化开发中&#xff0c;我们封装一个组件A&#xff0c;在另外一个组件B中使用 组件A中template的元素&#xff0c;会被挂载到组件B中template的某个位置&#xf…

Java网络编程实战:TCP/UDP Socket通信详解与高并发服务器设计

&#x1f50d; 开发者资源导航 &#x1f50d;&#x1f3f7;️ 博客主页&#xff1a; 个人主页&#x1f4da; 专栏订阅&#xff1a; JavaEE全栈专栏 内容&#xff1a; socket(套接字)TCP和UDP差别UDP编程方法使用简单服务器实现 TCP编程方法Socket和ServerSocket之间的关系使用简…

vue+threeJs 绘制3D圆形

嗨&#xff0c;我是小路。今天主要和大家分享的主题是“vuethreeJs 绘制圆形”。 今天找到一个用three.js绘制图形的项目&#xff0c;主要是用来绘制各种形状。 项目案例示意图 1.THREE.ShapeGeometry 定义&#xff1a;是 Three.js 中用于从 2D 路径形状&#xff08…

Silky-CTF: 0x02靶场

Silky-CTF: 0x02 来自 <Silky-CTF: 0x02 ~ VulnHub> 1&#xff0c;将两台虚拟机网络连接都改为NAT模式 2&#xff0c;攻击机上做namp局域网扫描发现靶机 nmap -sn 192.168.23.0/24 那么攻击机IP为192.168.23.128&#xff0c;靶场IP192.168.23.131 3&#xff0c;对靶机进…

Kafka 的优势是什么?

Kafka 作为分布式流处理平台的核心组件&#xff0c;其设计哲学围绕高吞吐、低延迟、高可扩展性展开&#xff0c;在实时数据管道和大数据生态中具有不可替代的地位。 一、超高吞吐量与低延迟 1. 磁盘顺序 I/O 优化 突破磁盘瓶颈&#xff1a;Kafka 将消息持久化到磁盘&#xff…

基于FPGA + JESD204B协议+高速ADC数据采集系统设计

摘 要&#xff1a; 针对激光扫描共聚焦显微镜的大视场、高分辨率需求&#xff0c;为在振镜扫描的时间内获取更多数据量&#xff0c;设计一种基 于 FPGA 的高速数据采集系统。该系统采用 Xilinx 的 A7 系列 FPGA 作为主控芯片&#xff0c;同时选用 TI 公司提供的 LM…

Ubuntu20.04 LTS 升级Ubuntu22.04LTS 依赖错误 系统崩溃重装 Ubuntu22.04 LTS

服务器系统为PowerEdge R740 BIOS Version 2.10.2 DELL EMC 1、关机 开机时连续按键盘F2 2、System Setup选择第一个 System BIOS 3、System BIOS Setting 选择 Boot Setting 4、System BIOS Setting-Boot Setting 选择 BIOS Boot Settings 5、重启 开启时连续按键盘F11 …

测量3D翼片的距离与角度

1&#xff0c;目的。 测量3D翼片的距离与角度。说明&#xff1a; 标注A 红色框选的区域即为翼片&#xff0c;本示例的3D 对象共有3个翼片待测。L1与L2的距离、L1与L2的角度即为所求的翼片距离与角度。 2&#xff0c;原理。 使用线结构光模型&#xff08;标定模式&#xff0…

零基础学习计算机网络编程----socket实现UDP协议

本章将会详细的介绍如何使用 socket 实现 UDP 协议的传送数据。有了前面基础知识的铺垫。对于本章的理解将会变得简单。将会从基础的 Serve 的初始化&#xff0c;进阶到 Client 的初始化&#xff0c;以及 run。最后实现一个简陋的小型的网络聊天室。 目录 1.UdpSever.h 1.1 构造…

谷歌地图2022高清卫星地图手机版v10.38.2 安卓版 - 前端工具导航

谷歌地图2022高清卫星地图手机版是由谷歌公司推出的一款非常好用的手机地图服务软件&#xff0c;用户能够通过精准的导航和定位来查看地图&#xff0c;周边的商店等生活服务都会在地图上显示&#xff0c;用起来超级方便。 谷歌卫星高清地图 下载链接&#xff1a;夸克网盘分享 …

RAG的ETL Pipeline源码解读

原文链接&#xff1a;SpringAI(GA)&#xff1a;RAG下的ETL源码解读 教程说明 说明&#xff1a;本教程将采用2025年5月20日正式的GA版&#xff0c;给出如下内容 核心功能模块的快速上手教程核心功能模块的源码级解读Spring ai alibaba增强的快速上手教程 源码级解读 版本&a…