【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.57】引入可形变卷积

news2025/7/14 3:47:29

文章目录

  • 前言
  • 一、解决问题
  • 二、基本原理
  • 三、​添加方法
  • 四、总结


前言

作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。

具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

卷积层用于提取图像中的特征信息,传统的矩形卷积通常使用固定的大小和比例的卷积核对特征图的特定位置进行特征学习和下采样。但在同一特征层的不同位置对应的是不同尺度和形状的目标,因此,目标检测具有一定的局限性。可变形卷积可根据对象的比例和形状自适应调整,变形卷积网络提出的不规则卷积核,有效地克服了固定矩形结构采样不足的缺点,提高了网络对物体变形的模拟
能力。YOLO检测网络的卷积层为conv2D卷积+BN+Silu激活函数,尝试将卷积层的卷积改为可可形变卷积,引入可变形卷积,扩大特征图的感受野,使提取的特征辨析力更强,有效地提高了模型的识别能力。

二、基本原理

在这里插入图片描述原文链接
代码链接
卷积神经网络(CNN)由于其构建模块中的固定几何结构,固有地局限于模型几何变换。在这项工作中,我们引入了两个新模块来增强神经网络的变换建模能力,即可变形卷积和可变形RoI池。这两种方法都基于在模块中增加额外偏移量的空间采样位置,并从目标任务中学习偏移量,而无需额外监督的想法。新的模块可以很容易地取代现有CNN中的普通模块,并且可以通过标准反向传播进行端到端的训练,从而产生可变形的卷积网络。广泛的实验验证了我们的方法在复杂的视觉任务(对象检测和语义分割)上的有效性。代码将被发布。

3x3可形变卷积结构示意图

三、​添加方法

第一步:先在common中定义模块DCNConv,然后在yolo.py中注册该模块。部分代码如下:

class DCNConv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv1 = nn.Conv2d(c1, c2, 3, 2, 1, groups=g, bias=False)
        deformable_groups = 1
        offset_channels = 18
        self.conv2_offset = nn.Conv2d(c2, deformable_groups * offset_channels, kernel_size=3, padding=1)
        self.conv2 = DeformConv2d(c2, c2, kernel_size=3, padding=1, bias=False)

        # self.conv2 = DeformableConv2d(c2, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(c2)
        self.act1 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        self.bn2 = nn.BatchNorm2d(c2)
        self.act2 = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

第二步:定义yaml网络结构文件。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, DCNConv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

第三步:在train.py中选择网络结构yaml即可。

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!


YOLO系列算法改进方法 | 目录一览表
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入
💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题
💡🎈☁️42. 引入V7中的ELAN网络
💡🎈☁️43. 结合最新Non-local Networks and Attention结构
💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet
💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)
💡🎈☁️46. 改进激活函数为ACON
💡🎈☁️47. 改进激活函数为GELU
💡🎈☁️48. 构建新的轻量网络—Slim-neck by GSConv(2022CVPR)
💡🎈☁️49. 模型剪枝、蒸馏、压缩
💡🎈☁️50. 超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet
💡🎈☁️51.融入多分支空洞卷积结构RFB-Bottleneck改进PANet构成新特征融合网络
💡🎈☁️52.将YOLOv8中的C2f模块融入YOLOv5
💡🎈☁️53.融入CFPNet网络中的ECVBlock模块,提升小目标检测能力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/396017.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SRP合批问题

1)SRP合批问题 ​2)多个Base相机渲染到同一个渲染目标,移动平台花屏的问题 3)粒子系统对GPU Instancing的支持 4)如何修改URP下场景和UI分辨率分离(不需要改颜色空间) 这是第327篇UWA技术知识分…

苹果新专利实现无线技术传输睡眠数据,蓝牙在智能家居中的应用

苹果于 2017 年 5 月收购了芬兰科技公司 Beddit,只是在过去 6 年时间里并没有太大的动作。根据美国商标和专利局本周公示的清单,苹果获得了一项 Beddit 相关的技术专利。 根据专利描述,苹果使用一根或者多根天线,利用电磁辐射的…

详解Java8中如何通过方法引用获取属性名/::的使用

在我们开发过程中常常有一个需求,就是要知道实体类中Getter方法对应的属性名称(Field Name),例如实体类属性到数据库字段的映射,我们常常是硬编码指定 属性名,这种硬编码有两个缺点。 1、编码效率低&#x…

Simulink 自动代码生成电机控制:在某国产ARM0定点MCU上实现自动代码生成无感电机控制

目录 前言 开发流程 定点化的技巧 代码生成运行演示 总结 前言 这次尝试了在国产arm0内核的MCU上实现Simulink自动代码生成永磁同步电机无传感控制。机缘巧合之下拿到了一块国产MCU的电机控制板和一个5000RPM的小电机。最后实现了无传感控制,在这里总结下一些经…

10.系统级I/O

1.基础所有的I/O设备被模型化为文件,所有的输入和输出被当作相应文件的读和写来执行应用程序在文件结尾检测到EOF(end of file)条件文本文件是只含有ASCII或Unicode字符的普通文件二进制文件是所有的其他文件对于内核,文本文件和二进制文件没有区别目录是…

女神节灯笼祝福【HTML+CSS】

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

STM32F103驱动LD3320语音识别模块

STM32F103驱动LD3320语音识别模块LD3320语音识别模块简介模块引脚定义STM32F103ZET6开发板与模块接线测试代码实验结果LD3320语音识别模块简介 基于 LD3320,可以在任何的电子产品中,甚至包括最简单的 51 作为主控芯片的系统中,轻松实现语音识…

Axure基础:事件和动态面板

这一篇文章我们主要是将如何做系统左侧的导航,并且告诉大家如何动态的切换各个页面。 一、事件 1、事件基础 事件的核心就是什么时候做什么事。其中的什么时候可以是如下: 能做的事情如下: 2、远程监控云中的事件 监控云需要达到这个效果…

React :一、简单概念

目录 1.什么是React? 2.谁开发的 3.为什么要学React? 4.React的特点? 5.React依赖包 6.第一个React程序 7.虚拟DOM的两种创建方法 8.虚拟DOM和真实DOM 1.什么是React? 用于构建用户界面的JavaScript库,是一个将…

Allegro如何用自带的功能将线段变成铜皮操作指导

Allegro如何用自带的功能将线段变成铜皮操作指导 在做PCB设计的时候,有时根据设计需要将线段变成铜皮,可以借助辅助工具来实现这一操作,但是Allegro自身也自带这个功能,如下图 需要把这段走线变成铜皮 具体操作如下 点击File点击Change Editor

【计算机基础】Socket IO

一、I/O 模型 一个输入操作通常包括两个阶段: 等待数据准备好从内核向进程复制数据 对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待数据到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复…

在超算上安装文件树命令tree

超算平台使用的centos系统没有内置tree命令,需要通过源码安装。记录安装流程如下。 1. 下载源码包 下载链接如下: http://mama.indstate.edu/users/ice/tree/ 选择“Download the latest version” 如本文下载了源码包“tree-2.1.0.tgz”. 2. 源码包…

分享一个应急响应web日志:access.log文件分析小工具

有时做应急响应的时候,需要提取web日志如access.log日志文件来分析系统遭受攻击的具体原因,由于开源的工具并不是很好用,所以自己用Python3写了一个简单的日志分析工具。先介绍一下access.log日志access.log日志文件记录了所有目标对Web服务器…

「题解」日常遇到指针面试题

🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️‍🔥专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章 🔥座右铭:“不要等到什么都没有了,才下定决心去做” &#x1…

项目--基于RTSP协议的简易服务器开发(2)

一、项目创立初衷: 由于之前学过计算机网络的相关知识,了解了计算机网络的基本工作原理,对于主流的协议有一定的了解。但对于应用层的协议还知之甚少,因此我去了解了下目前主要的应用层传输协议,发现RTSP(…

【React】一个评论案例带你入门React组件基础

Q : 你不必一定成为玫瑰,路边的小花同样点缀大地🌼🌼🌼🌼🌼 结构 分为4部分,评论数、排序的状态栏、发表评论的文本域、评论列表 想法: 输入框输入信息点击发表评论按钮&#xff0c…

统计学习--三种常见的相关系数

1)Pearson积差相关系数:用于量度两个变量X和Y之间的线性相关。它具有1和-1之间的值,其中1是总正线性相关性,0是非线性相关性,并且-1是总负线性相关性。Pearson相关系数的一个关键数学特性是它在两个变量的位置和尺度的…

Ip2Resion线上部署报数据越界及错误处理

上篇在本地测试调用Ip2Resigon解析行政区划 Ip2Region的Java本地实现运行正常,但部署到测试环境,抛出数组越界(java.lang.ArrayIndexOutOfBoundsException)异常。 环境信息 ip2Resion是2.7版本,对应文件后缀为 xdb。 …

基于Netty,从零开发一个IM即时通讯

可以说几乎所有高实时性的应用场景都需要用到IM技术。本篇将带大家从零开始搭建一个轻量级的IM服务端。麻雀虽小,五脏俱全,我们搭建的IM服务端实现以下功能: 1)一对一的文本消息、文件消息通信;2)每个消息有…

现代卷积神经网络(ResNet)

专栏:神经网络复现目录 本章介绍的是现代神经网络的结构和复现,包括深度卷积神经网络(AlexNet),VGG,NiN,GoogleNet,残差网络(ResNet),稠密连接网络…