Python图像处理:频域滤波降噪和图像增强

news2025/7/16 3:34:02

图像处理已经成为我们日常生活中不可或缺的一部分,涉及到社交媒体和医学成像等各个领域。通过数码相机或卫星照片和医学扫描等其他来源获得的图像可能需要预处理以消除或增强噪声。频域滤波是一种可行的解决方案,它可以在增强图像锐化的同时消除噪声。

快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具。通过利用图像的频域表示,我们可以根据图像的频率内容有效地分析图像,从而简化滤波程序的应用以消除噪声。本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并结合FFT位移和逆FFT位移的使用。

本文使用了三个Python库,即openCV、Numpy和Matplotlib。

 importcv2
 importnumpyasnp
 frommatplotlibimportpyplotasplt
 img=cv2.imread('sample.png',0) # Using 0 to read image in grayscale mode
 plt.imshow(img, cmap='gray')  #cmap is used to specify imshow that the image is in greyscale
 plt.xticks([]), plt.yticks([])  # remove tick marks
 plt.show()

1、快速傅里叶变换(FFT)

快速傅里叶变换(FFT)是一种广泛应用的数学技术,它允许图像从空间域转换到频率域,是频率变换的基本组成部分。利用FFT分析,可以得到图像的周期性,并将其划分为不同的频率分量,生成图像频谱,显示每个图像各自频率成分的振幅和相位。

 f=np.fft.fft2(img)  #the image 'img' is passed to np.fft.fft2() to compute its 2D Discrete Fourier transform f 
 mag=20*np.log(np.abs(f))
 plt.imshow(mag, cmap='gray') #cmap='gray' parameter to indicate that the image should be displayed in grayscale.
 plt.title('Magnitude Spectrum') 
 plt.xticks([]), plt.yticks([])
 plt.show()

上面代码使用np.abs()计算傅里叶变换f的幅度,np.log()转换为对数刻度,然后乘以20得到以分贝为单位的幅度。这样做是为了使幅度谱更容易可视化和解释。

2、FFT位移

为了使滤波算法应用于图像,利用FFT移位将图像的零频率分量被移动到频谱的中心

 fshift = np.fft.fftshift(f)
 mag = 20*np.log(np.abs(fshift)) 
 plt.imshow(mag, cmap = 'gray')
 plt.title('Centered Spectrum'), plt.xticks([]), plt.yticks([])
 plt.show()

3、过滤

频率变换的的一个目的是使用各种滤波算法来降低噪声和提高图像质量。两种最常用的图像锐化滤波器是Ideal high-pass filter 和Gaussian high-pass filter。这些滤波器都是使用的通过快速傅里叶变换(FFT)方法获得的图像的频域表示。

Ideal high-pass filter(理想滤波器) 是一种无限长的、具有无限频带宽和理想通带和阻带响应的滤波器。其通带内所有频率的信号都被完全传递,而阻带内所有频率的信号则完全被抑制。

在频域上,理想滤波器的幅频响应为:

  • 在通带内,幅频响应为 1
  • 在阻带内,幅频响应为 0

在时域上,理想滤波器的冲激响应为:

  • 在通带内,冲激响应为一个无限长的单位冲激函数序列
  • 在阻带内,冲激响应为零

由于理想滤波器在频域上具有无限带宽,因此它无法在实际应用中实现。实际中使用的数字滤波器通常是基于理想滤波器的逼近,所以才被成为只是一个Ideal。

高斯高通滤波器(Gaussian high-pass filter)是一种在数字图像处理中常用的滤波器。它的作用是在图像中保留高频细节信息,并抑制低频信号。该滤波器基于高斯函数,具有光滑的频率响应,可以适应各种图像细节。

高斯高通滤波器的频率响应可以表示为:

H(u,v) = 1 - L(u,v)

其中,L(u,v)是一个低通滤波器,它可以用高斯函数表示。通过将低通滤波器的响应从1中减去,可以得到一个高通滤波器的响应。在实际中,通常使用不同的参数设置来调整高斯函数,以达到不同的滤波效果。

圆形掩膜(disk-shaped images)是用于定义在图像中进行傅里叶变换时要保留或抑制的频率分量。在这种情况下,理想滤波器通常是指理想的低通或高通滤波器,可以在频域上选择保留或抑制特定频率范围内的信号。将这个理想滤波器应用于图像的傅里叶变换后,再进行逆变换,可以得到经过滤波器处理后的图像。

具体的细节我们就不介绍了,直接来看代码:

下面函数是生成理想高通和低通滤波器的圆形掩膜

 importmath
 defdistance(point1,point2):
     returnmath.sqrt((point1[0]-point2[0])**2+ (point1[1]-point2[1])**2)
 
 defidealFilterLP(D0,imgShape):
     base=np.zeros(imgShape[:2])
     rows, cols=imgShape[:2]
     center= (rows/2,cols/2)
     forxinrange(cols):
         foryinrange(rows):
             ifdistance((y,x),center) <D0:
                 base[y,x] =1
     returnbase
 
 defidealFilterHP(D0,imgShape):
     base=np.ones(imgShape[:2])
     rows, cols=imgShape[:2]
     center= (rows/2,cols/2)
     forxinrange(cols):
         foryinrange(rows):
             ifdistance((y,x),center) <D0:
                 base[y,x] =0
     returnbase

下面函数生成一个高斯高、低通滤波器与所需的圆形掩膜

 importmath
 defdistance(point1,point2):
     returnmath.sqrt((point1[0]-point2[0])**2+ (point1[1]-point2[1])**2)
 
 defgaussianLP(D0,imgShape):
     base=np.zeros(imgShape[:2])
     rows, cols=imgShape[:2]
     center= (rows/2,cols/2)
     forxinrange(cols):
         foryinrange(rows):
             base[y,x] =math.exp(((-distance((y,x),center)**2)/(2*(D0**2))))
     returnbase
 
 defgaussianHP(D0,imgShape):
     base=np.zeros(imgShape[:2])
     rows, cols=imgShape[:2]
     center= (rows/2,cols/2)
     forxinrange(cols):
         foryinrange(rows):
             base[y,x] =1-math.exp(((-distance((y,x),center)**2)/(2*(D0**2))))
     returnbase

过滤示例

 fig, ax=plt.subplots(2, 2) # create a 2x2 grid of subplots
 fig.suptitle('Filters') # set the title for the entire figure
 
 # plot the first image in the top-left subplot
 im1=ax[0, 0].imshow(np.abs(idealFilterLP(50, img.shape)), cmap='gray')
 ax[0, 0].set_title('Low Pass Filter of Diameter 50 px')
 ax[0, 0].set_xticks([])
 ax[0, 0].set_yticks([])
 
 # plot the second image in the top-right subplot
 im2=ax[0, 1].imshow(np.abs(idealFilterHP(50, img.shape)), cmap='gray')
 ax[0, 1].set_title('High Pass Filter of Diameter 50 px')
 ax[0, 1].set_xticks([])
 ax[0, 1].set_yticks([])
 
 # plot the third image in the bottom-left subplot
 im3=ax[1, 0].imshow(np.abs(gaussianLP(50 ,img.shape)), cmap='gray')
 ax[1, 0].set_title('Gaussian Filter of Diameter 50 px')
 ax[1, 0].set_xticks([])
 ax[1, 0].set_yticks([])
 
 # plot the fourth image in the bottom-right subplot
 im4=ax[1, 1].imshow(np.abs(gaussianHP(50 ,img.shape)), cmap='gray')
 ax[1, 1].set_title('Gaussian Filter of Diameter 50 px')
 ax[1, 1].set_xticks([])
 ax[1, 1].set_yticks([])
 
 # adjust the spacing between subplots
 fig.subplots_adjust(wspace=0.5, hspace=0.5)
 
 # save the figure to a file
 fig.savefig('filters.png', bbox_inches='tight')

相乘过滤器和移位的图像得到过滤图像

为了获得具有所需频率响应的最终滤波图像,关键是在频域中对移位后的图像与滤波器进行逐点乘法。

这个过程将两个图像元素的对应像素相乘。例如,当应用低通滤波器时,我们将对移位的傅里叶变换图像与低通滤波器逐点相乘。

此操作抑制高频并保留低频,对于高通滤波器反之亦然。这个乘法过程对于去除不需要的频率和增强所需的频率是必不可少的,从而产生更清晰和更清晰的图像。

它使我们能够获得期望的频率响应,并在频域获得最终滤波图像。

4、乘法滤波器(Multiplying Filter)和平移后的图像(Shifted Image)

乘法滤波器是一种以像素值为权重的滤波器,它通过将滤波器的权重与图像的像素值相乘,来获得滤波后的像素值。具体地,假设乘法滤波器的权重为h(i,j),图像的像素值为f(m,n),那么滤波后的像素值g(x,y)可以表示为:

g(x,y) = ∑∑ f(m,n)h(x-m,y-n)

其中,∑∑表示对所有的(m,n)进行求和。

平移后的图像是指将图像进行平移操作后的结果。平移操作通常是指将图像的像素沿着x轴和y轴方向进行平移。平移后的图像与原始图像具有相同的大小和分辨率,但它们的像素位置发生了变化。在滤波操作中,平移后的图像可以用于与滤波器进行卷积运算,以实现滤波操作。

此操作抑制高频并保留低频,对于高通滤波器反之亦然。这个乘法过程对于去除不需要的频率和增强所需的频率是必不可少的,从而产生更清晰和更清晰的图像。

它使我们能够获得期望的频率响应,并在频域获得最终滤波图像。

 fig, ax=plt.subplots()
 im=ax.imshow(np.log(1+np.abs(fftshifted_image*idealFilterLP(50,img.shape))), cmap='gray')
 ax.set_title('Filtered Image in Frequency Domain')
 ax.set_xticks([])
 ax.set_yticks([])
 
 fig.savefig('filtered image in freq domain.png', bbox_inches='tight')

在可视化傅里叶频谱时,使用np.log(1+np.abs(x))和20*np.log(np.abs(x))之间的选择是个人喜好的问题,可以取决于具体的应用程序。

一般情况下会使用Np.log (1+np.abs(x)),因为它通过压缩数据的动态范围来帮助更清晰地可视化频谱。这是通过取数据绝对值的对数来实现的,并加上1以避免取零的对数。

而20*np.log(np.abs(x))将数据按20倍缩放,并对数据的绝对值取对数,这可以更容易地看到不同频率之间较小的幅度差异。但是它不会像np.log(1+np.abs(x))那样压缩数据的动态范围。

这两种方法都有各自的优点和缺点,最终取决于具体的应用程序和个人偏好。

5、逆FFT位移

在频域滤波后,我们需要将图像移回原始位置,然后应用逆FFT。为了实现这一点,需要使用逆FFT移位,它反转了前面执行的移位过程。

 fig, ax=plt.subplots()
 im=ax.imshow(np.log(1+np.abs(np.fft.ifftshift(fftshifted_image*idealFilterLP(50,img.shape)))), cmap='gray')
 ax.set_title('Filtered Image inverse fft shifted')
 ax.set_xticks([])
 ax.set_yticks([])
 
 fig.savefig('filtered image inverse fft shifted.png', bbox_inches='tight')

6、快速傅里叶逆变换(IFFT)

快速傅里叶逆变换(IFFT)是图像频率变换的最后一步。它用于将图像从频域传输回空间域。这一步的结果是在空间域中与原始图像相比,图像减少了噪声并提高了清晰度。

 fig, ax=plt.subplots()
 im=ax.imshow(np.log(1+np.abs(np.fft.ifft2(np.fft.ifftshift(fftshifted_image*idealFilterLP(50,img.shape))))), cmap='gray')
 ax.set_title('Final Filtered Image In Spatial Domain')
 ax.set_xticks([])
 ax.set_yticks([])
 
 fig.savefig('final filtered image.png', bbox_inches='tight')

总结

我们再把所有的操作串在一起显示,

函数绘制所有图像

 defFreq_Trans(image, filter_used):
     img_in_freq_domain=np.fft.fft2(image)
 
     # Shift the zero-frequency component to the center of the frequency spectrum
     centered=np.fft.fftshift(img_in_freq_domain)
 
     # Multiply the filter with the centered spectrum
     filtered_image_in_freq_domain=centered*filter_used
 
     # Shift the zero-frequency component back to the top-left corner of the frequency spectrum
     inverse_fftshift_on_filtered_image=np.fft.ifftshift(filtered_image_in_freq_domain)
 
     # Apply the inverse Fourier transform to obtain the final filtered image
     final_filtered_image=np.fft.ifft2(inverse_fftshift_on_filtered_image)
 
     returnimg_in_freq_domain,centered,filter_used,filtered_image_in_freq_domain,inverse_fftshift_on_filtered_image,final_filtered_image

使用高通、低通理想滤波器和高斯滤波器的直径分别为50、100和150像素,展示它们对增强图像清晰度的影响。

 fig, axs=plt.subplots(12, 7, figsize=(30, 60))
 
 filters= [(f, d) forfin [idealFilterLP, idealFilterHP, gaussianLP, gaussianHP] fordin [50, 100, 150]]
 
 forrow, (filter_name, filter_diameter) inenumerate(filters):
     # Plot each filter output on a separate subplot
     result=Freq_Trans(img, filter_name(filter_diameter, img.shape))
 
     forcol, title, img_arrayinzip(range(7), 
     ["Original Image", "Spectrum", "Centered Spectrum", f"{filter_name.__name__} of Diameter {filter_diameter} px",
     f"Centered Spectrum multiplied by {filter_name.__name__}", "Decentralize", "Processed Image"],
     [img, np.log(1+np.abs(result[0])), np.log(1+np.abs(result[1])), np.abs(result[2]), np.log(1+np.abs(result[3])), 
      np.log(1+np.abs(result[4])), np.abs(result[5])]):
         
         axs[row, col].imshow(img_array, cmap='gray')
         axs[row, col].set_title(title)
 
 plt.tight_layout()
 plt.savefig('all_processess.png', bbox_inches='tight')
 plt.show()

可以看到,当改变圆形掩膜的直径时,对图像清晰度的影响会有所不同。随着直径的增加,更多的频率被抑制,从而产生更平滑的图像和更少的细节。减小直径允许更多的频率通过,从而产生更清晰的图像和更多的细节。为了达到理想的效果,选择合适的直径是很重要的,因为使用太小的直径会导致过滤器不够有效,而使用太大的直径会导致丢失太多的细节。

一般来说,高斯滤波器由于其平滑性和鲁棒性,更常用于图像处理任务。在某些应用中,需要更尖锐的截止,理想滤波器可能更适合。

利用FFT修改图像频率是一种有效的降低噪声和提高图像锐度的方法。这包括使用FFT将图像转换到频域,使用适当的技术过滤噪声,并使用反FFT将修改后的图像转换回空间域。通过理解和实现这些技术,我们可以提高各种应用程序的图像质量。

https://avoid.overfit.cn/post/8768ec2a60a0456eab327abc33146508

作者:Muhammad Ahmed

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/395947.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux:利用返回值传出参数,地址传递,值传递,使用回调函数赋值几个例程。

利用返回值传出参数&#xff0c;地址传递&#xff0c;值传递,使用回调函数赋值几个例程。 代码&#xff1a; #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <string…

C++ 算法主题系列之集结0-1背包问题的所有求解方案

1. 前言 背包问题是类型问题&#xff0c;通过对这一类型问题的理解和掌握&#xff0c;从而可以归纳出求解此类问题的思路和模板。 背包问题的分类有&#xff1a; 0-1背包问题&#xff0c;也称为不可分割背包问题。无限背包问题。判定性背包问题.带附属关系的背包问题。双背包…

如何提高软件测试执行力

高效的测试执行力 不管在哪个行业&#xff0c;高校的执行力都是不可或缺的。在软件测试行业更是这样。有些测试人员&#xff0c;很勤奋也很吃苦&#xff0c;但是可能最终不能很好的完成测试任务。究其原因就是一个测试执行力的问题。 高效执行就是有目标&#xff0c;有计划&…

BUUCTF [羊城杯 2020]easyre 题解

一.查壳 64位无壳 二.主函数逻辑 可以得知flag长度为38,然后进行三次加密 第一次加密是base64加密,得到code1 第二次加密是将code1拆成四段赋给code2 第三次加密是将code2内的数字和字母移3位,其他字符不变 str2保存的是最终的加密字符 三.encode_one_base64 看到主函数…

【Linux】Sudo的隐晦bug引发的一次业务问题排查

Sudo的隐晦bug引发的一次业务问题排查写在前面问题描述问题排查高负载现象排查日志排查跟踪任务调度过程Sudo引发的问题手动复现问题分析处理方案写在前面 记录一次生产环境sudo启动进程频繁被Kill且不报错的异常处理过程&#xff0c;如果遇到同样的问题只想要解决方案&#x…

AWS攻略——初识流量镜像

在实际应用场景下&#xff0c;我们可能需要建立一个测试环境&#xff0c;既能接线上流量&#xff0c;又不希望影响线上业务&#xff0c;这个时候流量镜像就派上用场。它会将一个网络接口中的流量复制到另外一个网络接口中&#xff0c;然后在后者上分发&#xff0c;而前者不受影…

AQS 源码解读

一、AQS AQS 是 AbstractQueuedSynchronizer 的简称&#xff0c;又称为同步阻塞队列&#xff0c;是 Java 中的一个抽象类。在其内部维护了一个由双向链表实现的 FIFO 线程等待队列&#xff0c;同时又提供和维护了一个共享资源 state &#xff0c;像我们平常使用的 ReentrantLo…

OpenCV-PyQT项目实战(12)项目案例08:多线程视频播放

欢迎关注『OpenCV-PyQT项目实战 Youcans』系列&#xff0c;持续更新中 OpenCV-PyQT项目实战&#xff08;1&#xff09;安装与环境配置 OpenCV-PyQT项目实战&#xff08;2&#xff09;QtDesigner 和 PyUIC 快速入门 OpenCV-PyQT项目实战&#xff08;3&#xff09;信号与槽机制 …

配置Clion用于STM23开发(Makefile)

前言 对于Clion配置STM32开发环境的教程在网上一搜一大堆&#xff0c;但是大部分都是22年之前的&#xff0c;使用的方法都是在STM32CubeMX生成SW4STM32工程。但是在22年不知道哪个版本后&#xff0c;CubeMX已经不再支持生成SW4STM32工程了&#xff0c;这也是我本人遇到的问题。…

10 Wifi网络的封装

概述 Wifi有多种工作模式,比如:STA模式、AccessPoint模式、Monitor模式、Ad-hoc模式、Mesh模式等。但在IPC设备上,主要使用STA和AccessPoint这两种模式。下面分别进行介绍。 STA模式:任何一种无线网卡都可以运行在此模式,这种模式也是无线网卡的默认模式。在此模式下,无线…

【算法】图的存储和遍历

作者&#xff1a;指针不指南吗 专栏&#xff1a;算法篇 &#x1f43e;或许会很慢&#xff0c;但是不可以停下&#x1f43e; 文章目录1. 图的存储1.1 邻接矩阵1.2 邻接表2. 图的遍历2.1 dfs 遍历2.2 bfs 遍历1. 图的存储 引入 一般来说&#xff0c;树和图有两种存储方式&#…

【Java】Mybatis查询数据库

文章目录MyBatis查询数据库1. MyBatis 是什么&#xff1f;2. 为什么要学习MyBatis&#xff1f;3. 怎么学MyBatis&#xff1f;4. 第一个MyBatis查询4.1 创建数据库和表4.2 添加MyBatis框架支持4.3 配置连接字符串和MyBatis4.3.1 配置连接数据库配置MyBatis中的XML路径4.4 添加业…

宝刀未老?VB语言迎来春天,低代码绝地逢生,程序员能淡定吗?

一、VB语言迎来春天 “VB语言过时了&#xff0c;早就淘汰了”&#xff0c;不少程序员认为&#xff0c;如今VB上不了台面。 有人说&#xff1a;VB是被微软砍掉的优秀产品之一&#xff0c;当年还和Delphi打对台来着, 那时候真的是如日中天&#xff01; 颠覆许多人认知的是28年过…

postgre8.3跨平台升级大版本的一些问题以及解决方式

背景&#xff1a; 因服务器升级&#xff08;Windows Server 2012-> 2019&#xff09;,服务器非直接版本升级&#xff0c;而是从一台2012直接移植到2019&#xff0c;考虑到以后可能还会升级更高版本&#xff0c;因此postgre8.3版本需要升级到新版本&#xff0c;当前时间postg…

知识蒸馏论文阅读:DKD算法笔记

标题&#xff1a;Decoupled Knowledge Distillation 会议&#xff1a;CVPR2022 论文地址&#xff1a;https://ieeexplore.ieee.org/document/9879819/ 官方代码&#xff1a;https://github.com/megvii-research/mdistiller 作者单位&#xff1a;旷视科技、早稻田大学、清华大学…

SpringCloud (Eureka服务注册、发现)

本章导学&#xff1a; 微服务各个服务如何调用&#xff1f;服务直接调用出现的问题Eureka的引出及其作用搭建单机Eureka 注册发现一、微服务各个服务之间的调用 很简单&#xff0c;我们只需要在SpringBoot的配置类里把RestTemplate类加载到容器&#xff0c;利用RestTemplate的…

【目标检测 DETR】通俗理解 End-to-End Object Detection with Transformers,值得一品。

文章目录DETR1. 亮点工作1.1 E to E1.2 self-attention1.3 引入位置嵌入向量1.4 消除了候选框生成阶段2. Set Prediction2.1 N个对象2.2 Hungarian algorithm3. 实例剖析4. 代码4.1 配置文件4.1.1 数据集的类别数4.1.2 训练集和验证集的路径4.1.3 图片的大小4.1.4 训练时的批量…

idea 2022.2.4 导入依赖警告的问题

在我导入依赖的时候&#xff0c;pom文件提示警告如下信息 Provides transitive vulnerable dependency commons-collections:commons-collections:3.2.2 Cx78f40514-81ff 7.5 Uncontrolled Recursion vulnerability pending CVSS allocation Results powered by Checkmarx(c) …

第十二章:网络编程

第十二章&#xff1a;网络编程 12.1&#xff1a;网络编程概述 ​ Java是Internet上的语言&#xff0c;它从语言级上提供了对网络应用程序的支持&#xff0c;程序员能够很容易开发常见的网络应用程序。 ​ Java提供的网络类库&#xff0c;可以实现无痛的网络连接&#xff0c;…

【项目精选】基于struts+hibernate的采购管理系统

点击下载 javaEE采购管理系统 本系统是一个独立的系统&#xff0c;用来解决企业采购信息的管理问题。采用JSP技术构建了一个有效而且实用的企业采购信息管理平台&#xff0c;目的是为高效地完成对企业采购信息的管理。经过 对课题的深入分析&#xff0c;采购系统需实现以下功能…