引言
小黑黑通过探索langchain源码,设计了一个关于agent使用工具
的一个简化版小demo(代码可以跑通),主要流程:
1.问题输入给大模型。
2.大模型进行思考,输出需要执行的action和相关思考信息。
3.通过代理
(demo中为perform_action函数)执行action进行工具调用,并返回工具调用结果(res)。
4.将action和res进行记录,继续喂给大模型进行思考,让大模型输出下一步action,以此类推…
demo准备工作
导包
from langchain_core.tools import BaseTool
from typing import Sequence, Optional, List
from langchain_core.prompts import BasePromptTemplate
import re
from langchain_core.tools import tool
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.agents import StructuredChatAgent
from langchain.chains.llm import LLMChain
from langchain_openai import ChatOpenAI
# 导入智能体
from langchain.agents.agent import Agent
from langchain.agents.structured_chat.output_parser import StructuredChatOutputParserWithRetries
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from typing import Any, List, Optional, Sequence, Tuple, Union
from langchain_core.agents import AgentAction
from langchain_core.language_models import BaseLanguageModel
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
from langchain.agents.tools import InvalidTool
定义prompt模板(提示大模型思考和调用工具)
前缀部分(任务说明)
PREFIX = 'Respond to the human as helpfully and accurately as possible. You have access to the following tools:'
后缀部分(输出格式定义)
SUFFIX = 'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\nThought:'
输入提示
HUMAN_MESSAGE_TEMPLATE = '''{input}
{agent_scratchpad}'''
引导部分
FORMAT_INSTRUCTIONS = '''Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
{{{{
“action”: $TOOL_NAME,
“action_input”: $INPUT
}}}}
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
$JSON_BLOB
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
{{{{
“action”: “Final Answer”,
“action_input”: “Final response to human”
}}}}
大模型定义(key脱敏处理,可以免费申请)
zhipu_key = '111111111111111111111111111111111111111111111'
llm = ChatOpenAI(
temperature=0.01,
model="glm-4-flash",
openai_api_key=zhipu_key,
openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)
组合prompt
def create_prompt(
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
human_message_template: str = HUMAN_MESSAGE_TEMPLATE,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
memory_prompts: Optional[List[BasePromptTemplate]] = None,
) -> BasePromptTemplate:
tool_strings = []
for tool in tools:
args_schema = re.sub("}", "}}", re.sub("{", "{{", str(tool.args)))
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
_memory_prompts = memory_prompts or []
messages = [
SystemMessagePromptTemplate.from_template(template),
*_memory_prompts,
HumanMessagePromptTemplate.from_template(human_message_template),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages) # type: ignore[arg-type]
工具函数定义
@tool
def multiply(first_int: int, second_int: int) -> int:
"""将两个整数相乘。"""
print('---------multiply-----------------')
return first_int * second_int
@tool
def add(first_int: int, second_int: int) -> int:
"将两个整数相加。"
print('---------add-----------------')
return first_int + second_int
@tool
def exponentiate(base: int, exponent: int) -> int:
"指数运算"
print('---------exponentiate-----------------')
with open('小黑黑.txt', 'w', encoding='utf-8') as f:
f.write('小黑黑')
return base**exponent
tools = [multiply, add, exponentiate]
prompt = create_prompt(tools=tools)
定义chain和智能体
# 定义chain
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=None,
)
# 定义智能体
structuredChatAgent = StructuredChatAgent(
llm_chain=llm_chain,
allowed_tools=[tool.name for tool in tools],
output_parser=StructuredChatOutputParserWithRetries())
demo核心代码
代理函数
# 执行智能体
def perform_action(agent, name_to_tool_map, agent_action, run_manager=None):
# 如果选择的工具在工具箱里
if agent_action.tool in name_to_tool_map:
# 获取所有工具
tool = name_to_tool_map[agent_action.tool]
# 判断是否直接返回工具
return_direct = tool.return_direct
# 获取智能体的输出前缀,例如思考内容用“Thought”,观察内容用“Observation:”,{'llm_prefix': 'Thought:', 'observation_prefix': 'Observation: '}
tool_run_kwargs = agent.tool_run_logging_kwargs()
# 执行工具
observation = tool.run(
agent_action.tool_input,
verbose=None,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
# 选择的工具不在工具箱内,返回“无效工具相关信息给大模型”
else:
tool_run_kwargs = agent.tool_run_logging_kwargs()
observation = InvalidTool().run(
{
"requested_tool_name": agent_action.tool,
"available_tool_names": list(name_to_tool_map.keys()),
},
verbose=self.verbose,
color=None,
callbacks=run_manager.get_child() if run_manager else None,
**tool_run_kwargs,
)
# 以AgentStep的形式返回
return AgentStep(action=agent_action, observation=observation)
大模型通过思考,一步步调用工具
# 历史动作和工具调用结果
intermediate_steps=[]
# 输入问题
question = '调用api计算3加5乘2等于多少?'
# 如果action为AgentFinish,则为最后一步,跳出循环
action = None
# 如果action为AgentFinish,则为最后一步,跳出循环
while True:
# 大语言模型通过思考给出action
action = structuredChatAgent.plan(intermediate_steps=intermediate_steps, input=question)
print('[[[action]]]:', action)
# 跳出循环
if isinstance(action, AgentFinish):
print('执行结束,得到答案')
break
# 通过 代理 执行action
agent_step = perform_action(structuredChatAgent, dict((tool.name,tool) for tool in tools), action)
print('[[[agent_step]]]:', agent_step)
# 将action和执行结果保存
intermediate_steps.append((agent_step.action, agent_step.observation))
print('*****************************************************************************************')
程序运行结果:
[[[action]]]: tool=‘multiply’ tool_input={‘first_int’: 5, ‘second_int’: 2} log=‘Thought: The user wants to calculate 3 + 5 * 2. According to the order of operations, multiplication should be performed before addition. So, I will first multiply 5 by 2 and then add 3 to the result.\nAction:\njson\n{\n "action": "multiply",\n "action_input": {\n "first_int": 5,\n "second_int": 2\n }\n}\n
’
---------multiply-----------------
[[[agent_step]]]: action=AgentAction(tool=‘multiply’, tool_input={‘first_int’: 5, ‘second_int’: 2}, log=‘Thought: The user wants to calculate 3 + 5 * 2. According to the order of operations, multiplication should be performed before addition. So, I will first multiply 5 by 2 and then add 3 to the result.\nAction:\njson\n{\n "action": "multiply",\n "action_input": {\n "first_int": 5,\n "second_int": 2\n }\n}\n
’) observation=10
[[[action]]]: tool=‘add’ tool_input={‘first_int’: 3, ‘second_int’: 10} log=‘Action:\njson\n{\n "action": "add",\n "action_input": {\n "first_int": 3,\n "second_int": 10\n }\n}\n
’
---------add-----------------
[[[agent_step]]]: action=AgentAction(tool=‘add’, tool_input={‘first_int’: 3, ‘second_int’: 10}, log=‘Action:\njson\n{\n "action": "add",\n "action_input": {\n "first_int": 3,\n "second_int": 10\n }\n}\n
’) observation=13
[[[action]]]: return_values={‘output’: ‘13’} log=‘Action:\njson\n{\n "action": "Final Answer",\n "action_input": "13"\n}\n
’
执行结束,得到答案
小黑黑下一步探索方向:
通过上述的action信息,自己手搓一个prompt,得以熟悉提示工程。
加油小黑黑,一步步手搓,享受其中!!与AI对话