【Linux】Linux程序地址基础

news2025/7/22 8:47:26

参考博客:https://blog.csdn.net/sjsjnsjnn/article/details/125533127

一、地址空间的阐述

1.1 程序地址空间

下面的图片展示了程序地址空间的组成结构

在这里插入图片描述

我们通过代码来验证一下

int g_unval;
int g_val = 100;

int main(int argc, char *argv[]);

void test1()
{
    int a = 10;
    int b = 20;
    const char *s = "hello world";
    
    printf("code addr:%p\n", main);       // 代码区
    printf("string rdonly addr:%p\n", s); // 字符常量区
	printf("init addr:%p\n", &g_val);     // 已初始化
    printf("uninit addr:%p\n", &g_unval); // 未初始化
    
    char *heap = (char *)malloc(10);
    printf("heap addr:%p\n", heap); // 堆区
    printf("stack addr:%p\n", &a);
    printf("stack addr:%p\n", &b);
    printf("stack addr:%p\n", &s);  // 栈区
    printf("stack addr:%p\n", &heap);
}

运行结果如下:

  1. 代码区的地址位于最低处,0x63e2eb7be37e
  2. 接着是字符串常量区0x63e2eb7bf004
  3. 然后是已初始化区0x63e2eb7c1010和未初始化区0x63e2eb7c1154
  4. 后面是堆区内存地址0x63e31e4b6ec0,堆区内存地址不是连续的
  5. 最后是栈区0x7fff3e007150~0x7fff3e007160,栈区地址是连续的
code addr:0x63e2eb7be37e
string rdonly addr:0x63e2eb7bf004
init addr:0x63e2eb7c1010
uninit addr:0x63e2eb7c1154
heap addr:0x63e31e4b6ec0
stack addr:0x7fff3e007150
stack addr:0x7fff3e007154
stack addr:0x7fff3e007158
stack addr:0x7fff3e007160

可以发现,打印的结果符合对应的地址结构

二、进程地址空间

2.1 程序虚拟地址打印

下面的代码演示创建一个子进程后,打印子进程和父进程程序变量的地址

void test2(){
    int ret = fork();
    if(ret == 0){
        std::cout << "I am child, g_val = " << g_val << ", &g_val = " << &g_val << std::endl;

        for(int i = 0 ; i< 5;++i){
            g_val--;
            std::cout << "==========change g_val=========" << std::endl;
            std::cout << "I am child, g_val = " << g_val << ", &g_val = " << &g_val << std::endl;
            sleep(1);
        }
    }
    else if(ret > 0){
        while(1){
            std::cout << "I am father, g_val = " << g_val << ", &g_val = " << &g_val << std::endl;
            sleep(1);
        }
    }
    else{
        std::cout << "error:" << strerror(ret) << std::endl;
    }
    
}

运行结果如下:

  • 在没有修改变量的情况下,父进程和子进程中g_val的地址一样,指向同一块内存
  • 但是修改了子进程中值的大小后,g_val的值不同,打印出来的地址确是同一段
  • 这里涉及了虚拟地址,我们打印出来的地址实际上是虚拟机制,而不是物理地址

在这里插入图片描述

2.2 进程地址空间结构

  • 之前说‘程序的地址空间’是不准确的,准确的应该说成进程虚拟地址空间 ,每个进程都会有自己的地址空间,认为自己独占物理内存。
  • 操作系统在描述进程地址空间时,是以结构体的形式描述的,在linux中这种结构体是 struct mm_struct 。它在内核中是一个数据结构类型,具体进程的地址空间变量。

这些变量就是每个空间的起始位置与结束位置。如下图所示

在这里插入图片描述

进程地址空间就类似于一把尺子,每个空间都有对应的起始位置和结束位置。通过这个虚拟地址去间接访问内存;

为什么不能直接去访问物理内存?

如果没有进程地址空间的加持,那么程序就会直接访问物理内存,没有区间可言,会存在恶意程序可以>随意修改别的进程的内存数据,以达到破坏的目的。有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。

2.3 如何通过虚拟地址访问物理地址

  • 每个进程都是独立的虚拟地址空间,两个独立进程的相同地址互不干扰,但是在物理上对每个进程可能也就分了一部分空间给了某个进程。

  • 每个进程被创建时,其对应的进程控制块和进程虚拟地址空间也会随之被创建。而操作系统可以通过进程的控制块找到其进程地址空间,通过页表对将虚拟地址转换为物理地址,达到访问物理地址的目的。

  • 这种方式称之为映射,调度某个进程执行时,就要把它的地址空间映射到一个物理空间上。
    在这里插入图片描述

因此,最终得到的虚拟地址通过下述转换得到物理地址,虽然虚拟地址一致,但是通过不同进程中的映射关系,会得到不同的物理地址,这就是为什么虚拟地址一致,但是得到的值是不同的原因

在这里插入图片描述

写时拷贝:就是等到修改数据时才真正分配内存空间,这是对程序性能的优化,可以延迟甚至是避免内存拷贝,当然目的就是避免不必要的内存拷贝

更多资料:https://github.com/0voice

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2401463.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

将图形可视化工具的 Python 脚本打包为 Windows 应用程序

前文我们已经写了一个基于python的tkinter库和matplotlib库的图形可视化工具。 基于Python的tkinter库的图形可视化工具&#xff08;15种图形的完整代码&#xff09;:基于Python的tkinter库的图形可视化工具&#xff08;15种图形的完整代码&#xff09;-CSDN博客 在前文基础上&…

无人机军用与民用技术对比分析

一、材料区别 军用无人机&#xff1a; 1. 高强度特种材料&#xff1a; 大量使用钛合金、碳纤维复合材料&#xff0c;兼顾轻量化与高强度&#xff0c;提升抗冲击性和隐身性能。 关键部件依赖进口材料。 2. 隐身涂层&#xff1a; 采用雷达吸波材料和低红外特征涂料&#xf…

刷leetcode hot100--矩阵6/1

1.螺旋矩阵【很久】6/1【感觉就是思路的搬运工&#xff0c;没完全理解】 54. 螺旋矩阵 - 力扣&#xff08;LeetCode&#xff09; 原来想 但是如果是奇数矩阵&#xff0c;遍历不到中间 解决思路&#xff1a; 用left,right,top,down标记/限定每次遍历的元素&#xff0c;每次从…

Docker轻松搭建Neo4j+APOC环境

Docker轻松搭建Neo4jAPOC环境 一、简介二、Docker部署neo4j三、Docker安装APOC插件四、删除数据库/切换数据库 一、简介 Neo4j 是一款高性能的 原生图数据库&#xff0c;采用 属性图模型 存储数据&#xff0c;支持 Cypher查询语言&#xff0c;适用于复杂关系数据的存储和分析。…

定制开发开源AI智能名片S2B2C商城小程序在无界零售中的应用与行业智能升级示范研究

摘要&#xff1a;本文聚焦无界零售背景下京东从零售产品提供者向零售基础设施提供者的转变&#xff0c;探讨定制开发开源AI智能名片S2B2C商城小程序在这一转变中的应用。通过分析该小程序在商业运营成本降低、效率提升、用户体验优化等方面的作用&#xff0c;以及其与京东AI和冯…

【大模型:知识图谱】--5.neo4j数据库管理(cypher语法2)

目录 1.节点语法 1.1.CREATE--创建节点 1.2.MATCH--查询节点 1.3.RETURN--返回节点 1.4.WHERE--过滤节点 2.关系语法 2.1.创建关系 2.2.查询关系 3.删除语法 3.1.DELETE 删除 3.2.REMOVE 删除 4.功能补充 4.1.SET &#xff08;添加属性&#xff09; 4.2.NULL 值 …

贪心算法应用:装箱问题(BFD算法)详解

贪心算法应用&#xff1a;装箱问题(BFD算法)详解 1. 装箱问题与BFD算法概述 1.1 装箱问题定义 装箱问题(Bin Packing Problem)是组合优化中的经典问题&#xff0c;其定义为&#xff1a; 给定n个物品&#xff0c;每个物品有大小wᵢ (0 < wᵢ ≤ C)无限数量的箱子&#xf…

编程技能:格式化打印05,格式控制符

专栏导航 本节文章分别属于《Win32 学习笔记》和《MFC 学习笔记》两个专栏&#xff0c;故划分为两个专栏导航。读者可以自行选择前往哪个专栏。 &#xff08;一&#xff09;WIn32 专栏导航 上一篇&#xff1a;编程技能&#xff1a;格式化打印04&#xff0c;sprintf 回到目录…

MPLAB X IDE ​软件安装与卸载

1、下载MPLAB X IDE V6.25 MPLAB X IDE | Microchip Technology 正常选Windows&#xff0c;点击Download&#xff0c;等待自动下载完成&#xff1b; MPLAB X IDE 一台电脑上可以安装多个版本&#xff1b; 2、安装MPLAB X IDE V6.25 右键以管理员运行&#xff1b;next; 勾选 I a…

windows编程实现文件拷贝

项目源码链接&#xff1a; 实现文件拷贝功能&#xff08;限制5GB大小&#xff09; 81c57de 周不才/cpp_linux study - Gitee.com 知识准备&#xff1a; 1.句柄 句柄是一个用于标识和引用系统资源&#xff08;如文件、窗口、进程、线程、位图等&#xff09;的值。它不是资…

[6-01-01].第12节:字节码文件内容 - 属性表集合

JVM学习大纲 二、属性表集合&#xff1a; 2.1.属性计数器&#xff1a; 2.2.属性表&#xff1a; 2.3.字节码文件组成5 -> 属性&#xff1a; 1.属性主要指的是类的属性&#xff0c;比如源码的文件名、内部类的列表等 2.4.字节码文件组成3 -> 字段&#xff1a; 1.字段中…

基于机器学习的水量智能调度研究

摘要&#xff1a;随着城市化进程的加速和水资源供需矛盾的日益突出&#xff0c;传统的水量调度模式因缺乏精准预测和动态调控能力&#xff0c;难以满足现代供水系统对高效性、稳定性和节能性的要求。本文针对供水系统中用水峰谷预测不准确、能耗高、供需失衡等核心问题&#xf…

深入浅出 Scrapy:打造高效、强大的 Python 网络爬虫

在数据为王的时代,高效获取网络信息是开发者必备的技能。今天我将为大家介绍 Python 爬虫领域的王者框架——Scrapy。无论你是数据工程师、分析师还是开发者,掌握 Scrapy 都能让你的数据采集效率提升数倍! 项目地址:https://github.com/scrapy/scrapy 官方文档:https://do…

贪心算法应用:带权任务间隔调度问题详解

贪心算法应用&#xff1a;带权任务间隔调度问题详解 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法。带权任务间隔调度问题是贪心算法的一个经典应用场景。 问题定义…

用电脑控制keysight示波器

KEYSIGHT示波器HD304MSO性能 亮点&#xff1a; 体验 200 MHz 至 1 GHz 的带宽和 4 个模拟通道。与 12 位 ADC 相比&#xff0c;使用 14 位模数转换器 &#xff08;ADC&#xff09; 将垂直分辨率提高四倍。使用 10.1 英寸电容式触摸屏轻松查看和分析您的信号。捕获 50 μVRMS …

LLaMA-Factory - 批量推理(inference)的脚本

scripts/vllm_infer.py 是 LLaMA-Factory 团队用于批量推理&#xff08;inference&#xff09;的脚本&#xff0c;基于 vLLM 引擎&#xff0c;支持高效的并行推理。它可以对一个数据集批量生成模型输出&#xff0c;并保存为 JSONL 文件&#xff0c;适合大规模评测和自动化测试。…

【Elasticsearch】Elasticsearch 核心技术(二):映射

Elasticsearch 核心技术&#xff08;二&#xff09;&#xff1a;映射 1.什么是映射&#xff08;Mapping&#xff09;1.1 元字段&#xff08;Meta-Fields&#xff09;1.2 数据类型 vs 映射类型1.2.1 数据类型1.2.2 映射类型 2.实际运用案例案例 1&#xff1a;电商产品索引映射案…

【计算机网络】网络层协议

1. ICMP协议的介绍及应用 IP协议的助手 —— ICMP 协议 ping 是基于 ICMP 协议工作的&#xff0c;所以要明白 ping 的工作&#xff0c;首先我们先来熟悉 ICMP 协议。 ICMP 全称是 Internet Control Message Protocol&#xff0c;也就是互联网控制报文协议。 里面有个关键词 …

结构型设计模式之Proxy(代理)

结构型设计模式之Proxy&#xff08;代理&#xff09; 前言&#xff1a; 代理模式&#xff0c;aop环绕通知&#xff0c;动态代理&#xff0c;静态代理 都是代理的一种&#xff0c;这次主要是记录设计模式的代理demo案例&#xff0c;详情请看其他笔记。 1&#xff09;意图 为其…

案例分享--汽车制动卡钳DIC测量

制动系统是汽车的主要组成部分&#xff0c;是汽车的主要安全部件之一。随着车辆性能的不断提高&#xff0c;车速不断提升&#xff0c;对车辆的制动系统也随之提出了更高要求&#xff0c;因此了解车辆制动系统中每个部件的动态行为成为了制动系统优化的主要途径&#xff0c;同时…