贪心算法应用:装箱问题(BFD算法)详解
1. 装箱问题与BFD算法概述
1.1 装箱问题定义
装箱问题(Bin Packing Problem)是组合优化中的经典问题,其定义为:
- 给定n个物品,每个物品有大小wᵢ (0 < wᵢ ≤ C)
- 无限数量的箱子,每个箱子容量为C
- 目标:用最少数量的箱子装下所有物品
1.2 BFD算法简介
最佳适应递减算法(Best Fit Decreasing, BFD)是解决装箱问题的高效启发式算法:
- 先将所有物品按大小降序排序
- 然后对每个物品,将其放入能容纳它且剩余空间最小的箱子
- 若无合适箱子,则开启新箱子
与FFD的区别:
- FFD选择第一个能装下物品的箱子
- BFD选择最适合(剩余空间最小)的箱子
2. BFD算法详细解析
2.1 算法思想
BFD算法的核心思想是:
- 排序阶段:大物品优先处理,减少碎片空间
- 放置阶段:每次选择最合适的箱子,提高空间利用率
2.2 算法步骤
- 输入:物品列表items,箱子容量C
- 排序:将items按非递增顺序排序
- 初始化:创建空箱子列表bins
- 分配物品:
- 对于每个物品item:
- 遍历所有箱子,找到满足条件且剩余空间最小的箱子
- 若找到,放入该箱子
- 若未找到,创建新箱子并放入
- 对于每个物品item:
- 输出:使用的箱子列表
2.3 伪代码表示
function BFD(items, C):
sortedItems = sortDescending(items)
bins = []
for item in sortedItems:
bestBin = null
minSpace = C + 1 // 初始化为大于最大可能值
for bin in bins:
space = C - bin.currentWeight
if space >= item and space < minSpace:
bestBin = bin
minSpace = space
if bestBin != null:
bestBin.add(item)
else:
newBin = new Bin(C)
newBin.add(item)
bins.add(newBin)
return bins
3. Java实现BFD算法
3.1 基础实现
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class BinPackingBFD {
public static void main(String[] args) {
List<Integer> items = List.of(4, 8, 5, 1, 2, 3, 6, 7, 9, 4);
int binCapacity = 10;
List<List<Integer>> bins = bestFitDecreasing(items, binCapacity);
printBins(bins);
}
public static List<List<Integer>> bestFitDecreasing(List<Integer> items, int binCapacity) {
// 复制并排序物品列表
List<Integer> sortedItems = new ArrayList<>(items);
Collections.sort(sortedItems, Collections.reverseOrder());
List<List<Integer>> bins = new ArrayList<>();
List<Integer> binCapacities = new ArrayList<>(); // 跟踪每个箱子的已用容量
for (int item : sortedItems) {
// 寻找最佳箱子
int bestBinIndex = -1;
int minRemaining = binCapacity + 1; // 初始化为不可能的值
for (int i = 0; i < bins.size(); i++) {
int remaining = binCapacity - binCapacities.get(i);
if (remaining >= item && remaining < minRemaining) {
bestBinIndex = i;
minRemaining = remaining;
}
}
// 放置物品
if (bestBinIndex != -1) {
bins.get(bestBinIndex).add(item);
binCapacities.set(bestBinIndex, binCapacities.get(bestBinIndex) + item);
} else {
List<Integer> newBin = new ArrayList<>();
newBin.add(item);
bins.add(newBin);
binCapacities.add(item);
}
}
return bins;
}
private static void printBins(List<List<Integer>> bins) {
System.out.println("使用的箱子数量: " + bins.size());
for (int i = 0; i < bins.size(); i++) {
List<Integer> bin = bins.get(i);
int sum = bin.stream().mapToInt(Integer::intValue).sum();
System.out.printf("箱子 %d: %s (总大小: %d)%n", i+1, bin, sum);
}
}
}
3.2 面向对象优化实现
import java.util.*;
public class BinPackingBFDAdvanced {
public static void main(String[] args) {
List<Integer> items = List.of(4, 8, 5, 1, 2, 3, 6, 7, 9, 4);
int binCapacity = 10;
BinPackingResult result = packItemsBFD(items, binCapacity);
result.printBins();
}
static class Bin {
private final int capacity;
private final List<Integer> items;
private int currentWeight;
public Bin(int capacity) {
this.capacity = capacity;
this.items = new ArrayList<>();
this.currentWeight = 0;
}
public boolean canAdd(int item) {
return currentWeight + item <= capacity;
}
public void addItem(int item) {
if (!canAdd(item)) {
throw new IllegalStateException("超出箱子容量");
}
items.add(item);
currentWeight += item;
}
public int getRemainingCapacity() {
return capacity - currentWeight;
}
public List<Integer> getItems() {
return Collections.unmodifiableList(items);
}
public int getCurrentWeight() {
return currentWeight;
}
}
static class BinPackingResult {
private final List<Bin> bins;
private final int binCapacity;
public BinPackingResult(List<Bin> bins, int binCapacity) {
this.bins = bins;
this.binCapacity = binCapacity;
}
public void printBins() {
System.out.println("使用的箱子数量: " + bins.size());
System.out.printf("平均填充率: %.2f%%%n", getAverageFillRate() * 100);
for (int i = 0; i < bins.size(); i++) {
Bin bin = bins.get(i);
System.out.printf("箱子 %2d: %s (总大小: %2d, 填充率: %5.2f%%)%n",
i+1, bin.getItems(), bin.getCurrentWeight(),
(double)bin.getCurrentWeight() / binCapacity * 100);
}
}
public double getAverageFillRate() {
return bins.stream()
.mapToDouble(bin -> (double)bin.getCurrentWeight() / binCapacity)
.average()
.orElse(0);
}
}
public static BinPackingResult packItemsBFD(List<Integer> items, int binCapacity) {
// 验证输入
validateInput(items, binCapacity);
// 排序物品
List<Integer> sortedItems = new ArrayList<>(items);
sortedItems.sort(Collections.reverseOrder());
List<Bin> bins = new ArrayList<>();
for (int item : sortedItems) {
Bin bestBin = findBestBin(bins, item, binCapacity);
if (bestBin != null) {
bestBin.addItem(item);
} else {
Bin newBin = new Bin(binCapacity);
newBin.addItem(item);
bins.add(newBin);
}
}
return new BinPackingResult(bins, binCapacity);
}
private static Bin findBestBin(List<Bin> bins, int item, int binCapacity) {
Bin bestBin = null;
int minRemaining = binCapacity + 1;
for (Bin bin : bins) {
if (bin.canAdd(item)) {
int remaining = bin.getRemainingCapacity() - item;
if (remaining < minRemaining) {
bestBin = bin;
minRemaining = remaining;
}
}
}
return bestBin;
}
private static void validateInput(List<Integer> items, int binCapacity) {
if (binCapacity <= 0) {
throw new IllegalArgumentException("箱子容量必须为正数");
}
for (int item : items) {
if (item <= 0) {
throw new IllegalArgumentException("物品大小必须为正数");
}
if (item > binCapacity) {
throw new IllegalArgumentException("存在物品大小超过箱子容量");
}
}
}
}
3.3 使用TreeSet优化查找
import java.util.*;
public class BinPackingBFDWithTreeSet {
public static void main(String[] args) {
List<Integer> items = List.of(4, 8, 5, 1, 2, 3, 6, 7, 9, 4);
int binCapacity = 10;
BinPackingResult result = packItemsBFD(items, binCapacity);
result.printBins();
}
static class Bin implements Comparable<Bin> {
private final int capacity;
private final List<Integer> items;
private int currentWeight;
public Bin(int capacity) {
this.capacity = capacity;
this.items = new ArrayList<>();
this.currentWeight = 0;
}
public boolean canAdd(int item) {
return currentWeight + item <= capacity;
}
public void addItem(int item) {
if (!canAdd(item)) {
throw new IllegalStateException("超出箱子容量");
}
items.add(item);
currentWeight += item;
}
public int getRemainingCapacity() {
return capacity - currentWeight;
}
public List<Integer> getItems() {
return Collections.unmodifiableList(items);
}
@Override
public int compareTo(Bin other) {
// 按剩余容量升序排列
return Integer.compare(this.getRemainingCapacity(), other.getRemainingCapacity());
}
}
static class BinPackingResult {
private final List<Bin> bins;
public BinPackingResult(List<Bin> bins) {
this.bins = bins;
}
public void printBins() {
System.out.println("使用的箱子数量: " + bins.size());
for (int i = 0; i < bins.size(); i++) {
Bin bin = bins.get(i);
System.out.printf("箱子 %2d: %s (总大小: %2d)%n",
i+1, bin.getItems(), bin.currentWeight);
}
}
}
public static BinPackingResult packItemsBFD(List<Integer> items, int binCapacity) {
// 排序物品
List<Integer> sortedItems = new ArrayList<>(items);
sortedItems.sort(Collections.reverseOrder());
List<Bin> bins = new ArrayList<>();
TreeSet<Bin> binTree = new TreeSet<>();
for (int item : sortedItems) {
// 创建一个临时bin用于查找
Bin tempBin = new Bin(binCapacity);
tempBin.addItem(binCapacity - item); // 剩余容量=item的箱子
// 找到剩余容量 >= item的最小箱子
Bin candidate = binTree.ceiling(tempBin);
if (candidate != null && candidate.canAdd(item)) {
// 从TreeSet中移除,修改后再添加回去
binTree.remove(candidate);
candidate.addItem(item);
binTree.add(candidate);
} else {
Bin newBin = new Bin(binCapacity);
newBin.addItem(item);
bins.add(newBin);
binTree.add(newBin);
}
}
return new BinPackingResult(bins);
}
}
4. 算法分析与性能优化
4.1 时间复杂度分析
- 排序阶段:O(n log n)
- 装箱阶段:
- 基础实现:O(n²) - 每个物品遍历所有箱子
- TreeSet优化:O(n log n) - 每次查找O(log n)
4.2 空间复杂度
- O(n) - 需要存储所有物品和箱子信息
4.3 性能对比测试
import java.util.*;
import java.util.stream.IntStream;
public class BFDPerformanceTest {
public static void main(String[] args) {
int numItems = 100000;
int binCapacity = 100;
List<Integer> items = generateRandomItems(numItems, binCapacity);
// 预热
BinPackingBFD.bestFitDecreasing(items.subList(0, 1000), binCapacity);
BinPackingBFDAdvanced.packItemsBFD(items.subList(0, 1000), binCapacity);
// 测试基础实现
long start = System.currentTimeMillis();
List<List<Integer>> bins1 = BinPackingBFD.bestFitDecreasing(items, binCapacity);
long end = System.currentTimeMillis();
System.out.printf("基础BFD实现: %5dms, 箱子数: %d%n", end-start, bins1.size());
// 测试高级实现
start = System.currentTimeMillis();
BinPackingBFDAdvanced.BinPackingResult result = BinPackingBFDAdvanced.packItemsBFD(items, binCapacity);
end = System.currentTimeMillis();
System.out.printf("高级BFD实现: %5dms, 箱子数: %d, 平均填充率: %.2f%%%n",
end-start, result.bins.size(), result.getAverageFillRate()*100);
}
private static List<Integer> generateRandomItems(int count, int maxSize) {
Random random = new Random();
return IntStream.range(0, count)
.map(i -> random.nextInt(maxSize) + 1)
.boxed()
.toList();
}
}
5. 应用场景与扩展
5.1 实际应用案例
-
物流运输:
- 集装箱装载优化
- 卡车货物配载
- 航空货运管理
-
云计算:
- 虚拟机分配
- 容器调度
- 资源分配
-
生产制造:
- 原材料切割
- 生产任务调度
- 仓库货架管理
5.2 算法扩展变种
-
多维BFD:
- 考虑物品的多个维度(长、宽、高)
- 实现方式:扩展Bin类,添加多维容量检查
-
动态BFD:
- 处理动态到达的物品流
- 实现方式:结合在线算法策略
-
成本感知BFD:
- 不同箱子有不同的使用成本
- 实现方式:在选择箱子时考虑成本因素
-
带约束的BFD:
- 某些物品不能放在一起
- 实现方式:添加冲突检查逻辑
6. 与其他算法对比
6.1 BFD vs FFD
特性 | BFD | FFD |
---|---|---|
选择策略 | 剩余空间最小的合适箱子 | 第一个能装下的箱子 |
空间利用率 | 通常更高 | 略低 |
时间复杂度 | O(n²)或O(n log n) | O(n²)或O(n log n) |
实现复杂度 | 稍复杂 | 较简单 |
适用场景 | 对空间利用率要求高的场景 | 一般场景 |
6.2 BFD与其他算法对比
-
Next Fit (NF):
- 只检查当前箱子,无法回溯
- 效率低但实现简单
-
First Fit (FF):
- 选择第一个能装下的箱子
- 比BFD快但空间利用率低
-
Worst Fit (WF):
- 选择剩余空间最大的箱子
- 适合希望均匀分布负载的场景
7. 完整Java实现(综合版)
import java.util.*;
import java.util.stream.Collectors;
/**
* 完整的BFD算法实现,包含所有优化和功能
*/
public class ComprehensiveBFD {
public static void main(String[] args) {
// 示例使用
List<Integer> items = generateItems(20, 10);
int binCapacity = 10;
System.out.println("物品列表: " + items);
BFDResult result = pack(items, binCapacity);
result.printAnalysis();
}
/**
* BFD装箱结果类
*/
public static class BFDResult {
private final List<Bin> bins;
private final int binCapacity;
private final long packingTime;
public BFDResult(List<Bin> bins, int binCapacity, long packingTime) {
this.bins = bins;
this.binCapacity = binCapacity;
this.packingTime = packingTime;
}
public int getBinCount() {
return bins.size();
}
public double getAverageFillRate() {
return bins.stream()
.mapToDouble(bin -> (double)bin.getUsedCapacity() / binCapacity)
.average()
.orElse(0);
}
public double getEfficiency() {
int totalItems = bins.stream().mapToInt(bin -> bin.getItems().size()).sum();
return (double)totalItems / (bins.size() * binCapacity);
}
public void printAnalysis() {
System.out.println("\n装箱分析结果:");
System.out.printf("箱子数量: %d\n", getBinCount());
System.out.printf("平均填充率: %.2f%%\n", getAverageFillRate() * 100);
System.out.printf("算法效率: %.4f\n", getEfficiency());
System.out.printf("计算时间: %dms\n", packingTime);
System.out.println("\n箱子详情:");
bins.forEach(bin -> {
System.out.printf("箱子 %2d: %s (使用率: %5.2f%%)%n",
bins.indexOf(bin)+1,
bin.getItems().stream()
.map(String::valueOf)
.collect(Collectors.joining(", ", "[", "]")),
(double)bin.getUsedCapacity() / binCapacity * 100);
});
}
}
/**
* 箱子类
*/
public static class Bin {
private final List<Integer> items;
private int usedCapacity;
public Bin() {
this.items = new ArrayList<>();
this.usedCapacity = 0;
}
public boolean canAdd(int item, int binCapacity) {
return usedCapacity + item <= binCapacity;
}
public void addItem(int item) {
items.add(item);
usedCapacity += item;
}
public List<Integer> getItems() {
return Collections.unmodifiableList(items);
}
public int getUsedCapacity() {
return usedCapacity;
}
}
/**
* 装箱方法
*/
public static BFDResult pack(List<Integer> items, int binCapacity) {
long startTime = System.currentTimeMillis();
// 验证输入
validateInput(items, binCapacity);
// 排序物品(降序)
List<Integer> sortedItems = new ArrayList<>(items);
sortedItems.sort(Collections.reverseOrder());
List<Bin> bins = new ArrayList<>();
// 使用TreeMap优化查找: key=剩余容量, value=箱子索引列表
TreeMap<Integer, List<Integer>> remainingMap = new TreeMap<>();
for (int item : sortedItems) {
// 查找最小剩余容量 >= item的箱子
Map.Entry<Integer, List<Integer>> entry = remainingMap.ceilingEntry(item);
if (entry != null) {
// 获取第一个匹配的箱子
int binIndex = entry.getValue().get(0);
Bin bin = bins.get(binIndex);
// 更新TreeMap
updateTreeMap(remainingMap, bin, binIndex, item, binCapacity);
// 添加物品到箱子
bin.addItem(item);
} else {
// 创建新箱子
Bin newBin = new Bin();
newBin.addItem(item);
bins.add(newBin);
// 计算并添加剩余容量到TreeMap
int remaining = binCapacity - item;
if (remaining > 0) {
remainingMap.computeIfAbsent(remaining, k -> new ArrayList<>())
.add(bins.size() - 1);
}
}
}
long endTime = System.currentTimeMillis();
return new BFDResult(bins, binCapacity, endTime - startTime);
}
private static void updateTreeMap(TreeMap<Integer, List<Integer>> map,
Bin bin, int binIndex, int item, int binCapacity) {
// 移除旧的剩余容量记录
int oldRemaining = binCapacity - (bin.getUsedCapacity() - item);
List<Integer> indices = map.get(oldRemaining);
if (indices != null) {
indices.remove(Integer.valueOf(binIndex));
if (indices.isEmpty()) {
map.remove(oldRemaining);
}
}
// 添加新的剩余容量记录
int newRemaining = binCapacity - bin.getUsedCapacity();
if (newRemaining > 0) {
map.computeIfAbsent(newRemaining, k -> new ArrayList<>())
.add(binIndex);
}
}
private static void validateInput(List<Integer> items, int binCapacity) {
if (binCapacity <= 0) {
throw new IllegalArgumentException("箱子容量必须为正数");
}
for (int item : items) {
if (item <= 0) {
throw new IllegalArgumentException("物品大小必须为正数");
}
if (item > binCapacity) {
throw new IllegalArgumentException("存在物品大小超过箱子容量");
}
}
}
private static List<Integer> generateItems(int count, int maxSize) {
return new Random().ints(count, 1, maxSize + 1)
.boxed()
.collect(Collectors.toList());
}
}
8. 总结
最佳适应递减算法(BFD)是解决装箱问题的高效算法:
- 排序+贪心:通过先排序再贪心选择,实现高效装箱
- 空间利用率高:通常比FFD获得更好的装箱结果
- 灵活可扩展:可适应多种变种问题
- 平衡效率:在时间复杂度和空间利用率间取得良好平衡
在实际应用中,BFD算法特别适合:
- 对空间利用率要求高的场景
- 物品大小差异较大的情况
- 需要高质量近似解的场合
通过Java实现时,使用TreeSet/TreeMap等数据结构可以显著提高算法效率,特别是在处理大规模数据时。