Python训练营打卡 Day41

news2025/6/2 16:52:05

简单CNN

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

简单 CNN

1. 数据增强

数据增强就像是在餐厅的食材上应用各种处理方法,以增加菜品的多样性和丰富性。例如,可以通过旋转、翻转、裁剪等方法来扩充食材的种类和形态,使模型在训练过程中看到更多的“菜品”变化,从而提高模型的泛化能力。

2. 卷积神经网络定义的写法

卷积神经网络(CNN)的定义就像是餐厅的高级菜谱,其中包含了多种复杂的烹饪步骤和技巧。CNN 通过卷积层、池化层、激活函数等组件来提取图像的特征,从而实现对图像的分类或识别。

3. Batch 归一化

Batch 归一化就像是在厨房中对食材进行标准化处理,确保每一批次的食材在烹饪前都有相同的均值和方差。这有助于加快模型的训练速度,并提高模型的稳定性。

4. 特征图

特征图就像是厨师在烹饪过程中创建的中间产物,这些中间产物包含了食材经过初步处理后的信息。在 CNN 中,特征图是由卷积层生成的,它们捕捉了图像的不同特征,如边缘、纹理等。

5. 调度器

调度器就像是餐厅的经理,根据餐厅的运营情况(如顾客流量、食材供应等)动态调整厨师的工作强度和节奏。在训练模型时,调度器会根据训练进度动态调整学习率,以加快收敛速度并提高模型性能。

6. 卷积操作常见流程

卷积操作的常见流程可以比喻为餐厅制作一道复杂菜品的步骤:

  1. 输入:就像厨师接到顾客的订单,开始准备食材。

  2. 卷积层:厨师对食材进行初步处理,如切割、搅拌等,提取出食材的基本特征。

  3. Batch 归一化层(可选):厨师对处理后的食材进行标准化,确保每一批次的食材质量一致。

  4. 池化层:厨师对食材进行进一步处理,如浓缩、提纯等,减少数据量并突出重要特征。

  5. 激活函数:厨师根据菜谱添加特定的调料,使菜品具有独特的风味,激活函数为模型引入非线性。

  6. 下一层:处理后的食材传递给下一位厨师,进行下一步烹饪。

7. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
  • Flatten:将多维的特征图展平成一维向量,类似于将复杂菜品的所有成分混合在一起,形成一个统一的混合物。

  • Dense (with Dropout):对混合物进行进一步加工,添加 Dropout 就像是在烹饪过程中随机丢弃一些成分,以防止过度依赖某些特定成分(防止过拟合)。

  • Dense (Output):最终输出菜品,类似于将所有成分组合成一个完整的菜品,呈现给顾客。

作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
 
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
 
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
 
# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
    # 随机裁剪图像,从原图中随机截取32x32大小的区域
    transforms.RandomCrop(32, padding=4),
    # 随机水平翻转图像(概率0.5)
    transforms.RandomHorizontalFlip(),
    # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    # 随机旋转图像(最大角度15度)
    transforms.RandomRotation(15),
    # 将PIL图像或numpy数组转换为张量
    transforms.ToTensor(),
    # 标准化处理:每个通道的均值和标准差,使数据分布更合理
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
 
# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
 
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform  # 使用增强后的预处理
)
 
test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform  # 测试集不使用增强
)
 
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()  # 继承父类初始化
        
        # ---------------------- 第一个卷积块 ----------------------
        # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素
        self.conv1 = nn.Conv2d(
            in_channels=3,       # 输入通道数(图像的RGB通道)
            out_channels=32,     # 输出通道数(生成32个新特征图)
            kernel_size=3,       # 卷积核尺寸(3x3像素)
            padding=1            # 边缘填充1像素,保持输出尺寸与输入相同
        )
        # 批量归一化层:对32个输出通道进行归一化,加速训练
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU激活函数:引入非线性,公式:max(0, x)
        self.relu1 = nn.ReLU()
        # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size
        
        # ---------------------- 第二个卷积块 ----------------------
        # 卷积层2:输入32通道(来自conv1的输出),输出64通道
        self.conv2 = nn.Conv2d(
            in_channels=32,      # 输入通道数(前一层的输出通道数)
            out_channels=64,     # 输出通道数(特征图数量翻倍)
            kernel_size=3,       # 卷积核尺寸不变
            padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8
        
        # ---------------------- 第三个卷积块 ----------------------
        # 卷积层3:输入64通道,输出128通道
        self.conv3 = nn.Conv2d(
            in_channels=64,      # 输入通道数(前一层的输出通道数)
            out_channels=128,    # 输出通道数(特征图数量再次翻倍)
            kernel_size=3,
            padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
        )
        self.bn3 = nn.BatchNorm2d(num_features=128)
        self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)
        self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4
        
        # ---------------------- 全连接层(分类器) ----------------------
        # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
        self.fc1 = nn.Linear(
            in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)
            out_features=512          # 输出维度(隐藏层神经元数)
        )
        # Dropout层:训练时随机丢弃50%神经元,防止过拟合
        self.dropout = nn.Dropout(p=0.5)
        # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)
        self.fc2 = nn.Linear(in_features=512, out_features=10)
 
    def forward(self, x):
        # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
        
        # ---------- 卷积块1处理 ----------
        x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
        x = self.bn1(x)         # 批量归一化,不改变尺寸
        x = self.relu1(x)       # 激活函数,不改变尺寸
        x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
        
        # ---------- 卷积块2处理 ----------
        x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]
        
        # ---------- 卷积块3处理 ----------
        x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]
        
        # ---------- 展平与全连接层 ----------
        # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
        x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变
        
        x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]
        x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)
        x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸
        x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
        
        return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数
 
 
 
# 初始化模型
model = CNN()
#model = model.to(device)  # 将模型移至GPU(如果可用)
# 5. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类任务
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器,学习率0.001
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  
 
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  
 
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    # 记录每个 epoch 的准确率和损失
    train_acc_history = []
    test_acc_history = []
    train_loss_history = []
    test_loss_history = []
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                    f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        
        # 更新学习率调度器
        scheduler.step(epoch_test_loss)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    # 绘制每个 epoch 的准确率和损失曲线
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率
 
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
 
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    
    # 绘制准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    
    # 绘制损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()
 
# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
 
# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

1. 数据预处理和增强

  • 训练集数据增强:使用了随机裁剪、随机水平翻转、随机颜色抖动和随机旋转等操作来扩充训练数据的多样性,帮助模型更好地泛化。

  • 测试集预处理:仅进行了标准化处理,以保持数据的一致性。

2. 数据加载

  • 使用 DataLoader 将 CIFAR-10 数据集加载为批次数据,方便模型训练和测试。

3. CNN 模型定义

  • 卷积块:包括卷积层、批量归一化层、ReLU 激活函数和最大池化层,用于提取图像特征。

  • 全连接层:将卷积层提取的特征展平后,通过全连接层进行分类,最后输出分类结果。

4. 模型训练

  • 损失函数:使用交叉熵损失函数,适用于多分类任务。

  • 优化器:使用 Adam 优化器,学习率为 0.001。

  • 学习率调度器:使用 ReduceLROnPlateau 调度器,根据验证损失动态调整学习率。

5. 训练和测试函数

  • 训练函数:记录每个 iteration 的损失,并在每个 epoch 结束后计算训练和测试的准确率及损失。

  • 测试函数:在测试集上评估模型的性能。

6. 结果可视化

  • 绘制损失曲线:展示每个 iteration 的训练损失变化。

  • 绘制准确率和损失曲线:展示每个 epoch 的训练和测试准确率及损失变化。

7. 执行训练和测试

  • 设置训练轮次为 20,开始训练模型,并在训练结束后输出最终的测试准确率。

这段代码通过 CNN 模型在 CIFAR-10 数据集上实现了图像分类任务,包含了数据预处理、模型定义、训练、测试和结果可视化的完整流程。通过数据增强和学习率调度等技巧,提高了模型的泛化能力和训练效果。

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VScode ios 模拟器安装cocoapods

使用 Homebrew 安装(推荐) 如果你有 Homebrew,直接用它安装更稳定: brew install cocoapods

Redis最佳实践——安全与稳定性保障之数据持久化详解

Redis 在电商应用的安全与稳定性保障之数据持久化全面详解 一、持久化机制深度解析 1. 持久化策略矩阵 策略触发方式数据完整性恢复速度适用场景RDB定时快照分钟级快容灾备份/快速恢复AOF实时追加日志秒级慢金融交易/订单关键操作混合模式RDBAOF同时启用秒级中等高安全要求场…

K 值选对,准确率翻倍:KNN 算法调参的黄金法则

目录 一、背景介绍 二、KNN 算法原理 2.1 核心思想 2.2 距离度量方法 2.3 算法流程 2.4算法结构: 三、KNN 算法代码实现 3.1 基于 Scikit-learn 的简单实现 3.2 手动实现 KNN(自定义代码) 四、K 值选择与可视化分析 4.1 K 值对分类…

技术栈ES的介绍和使用

目录 1. 全文搜索引擎(Elastic Search)的由来2. Elastic Search 概述2.1 Elastic Search 介绍2.2 Elastic Search 功能2.3 Elastic Search 特点 3. 安装 Elastic Search3.1 ES 的安装3.2 安装 kibana3.3 ES 客户端的安装 4. Elastic Search 基本概念4.1 …

Windows版本的postgres安装插件http

1、下载安装包 这里使用安装 pgsql-http 的扩展 源码地址:GitHub - pramsey/pgsql-http: HTTP client for PostgreSQL, retrieve a web page from inside the database. 编译的安装地址:http extension for windows updated to include PostgreSQL17 …

uni-app学习笔记十六-vue3页面生命周期(三)

uni-app官方文档页面生命周期部分位于页面 | uni-app官网。 本篇再介绍2个生命周期 1.onUnload:用于监听页面卸载。 当页面被关闭时,即页面的缓存被清掉时触发加载onUnload函数。 例如:在demo6页面点击跳转到demo4,在demo4页面回退不了到d…

优化的两极:凸优化与非凸优化的理论、应用与挑战

在机器学习、工程设计、经济决策等众多领域,优化问题无处不在。而在优化理论的世界里,凸优化与非凸优化如同两个截然不同的 “王国”,各自有着独特的规则、挑战和应用场景。今天,就让我们深入探索这两个优化领域的核心差异、算法特…

(五)MMA(OpenTelemetry/Rabbit MQ/ApiGateway/MongoDB)

文章目录 项目地址一、OpenTelemetry1.1 配置OpenTelemetry1. 服务添加2. 添加服务标识3. 添加请求的标识4. 添加中间价 二、Rabbit MQ2.1 配置Rabbit MQ1. docker-compose2. 添加Rabbit MQ的Connect String 2.2 替换成Rabbit MQ1. 安装所需要的包2. 使用 三、API Gateways3.1 …

TCP通信与MQTT协议的关系

1. MQTT 处理核心(Mqtt_Pro) void Mqtt_Pro(void) { MQTT_Init(); // 初始化MQTT协议栈(连接参数、缓冲区等) MQTT_SendPro(); // 处理MQTT发送(封装消息,调用TCP发送) MQTT_RecPro();…

Jetson Orin Nano - SONY imx415 camera驱动开发

目录 前言: 调试准备工作: 修改内核默认打印等级 一、imx415驱动开发 1、硬件接线 2、设备树修改 2.1 创建 tegra234-p3767-camera-p3768-imx415-C-4lane.dtsi 文件 2.2 tegra234-p3767-camera-p3768-imx415-C-4lane.dtsi 添加到设备树 2.3 编译设备树 3、imx415驱动…

word为跨页表格新加表头和表名

问题: 当表格过长需要跨页时(如下图所示),某些格式要求需要转页接排加续表。 方法一: 1、选中表格,在“表布局”区域点开“自动调整”,选择“固定列宽”(防止后续拆分表格后表格变…

测试用例篇章

本节概要: 测试⽤例的概念 设计测试⽤例的万能思路 设计测试⽤例的⽅法 一、测试用例 1.1 概念 什么是测试用例? 测试⽤例(Test Case)是为了实施测试⽽向被测试的系统提供的⼀组集合,这组集合包含:测…

2025年北京市职工职业技能大赛第六届信息通信行业网络安全技能大赛复赛CTF部分WP-哥斯拉流量分析

2025年北京市职工职业技能大赛第六届信息通信行业网络安全技能大赛复赛CTF部分WP-哥斯拉流量分析 一、流量分析 题目没有任何提示,附件gzl.pcap 解题哥斯拉流量300多KB包很多,没啥经验只能挨个看回来之后又狠狠得撸了一把哥斯拉流量分析我这里用的是哥斯拉4.0.1 测试链接…

Django ToDoWeb 服务

我们的任务是使用 Django 创建一个简单的 ToDo 应用程序,允许用户添加、查看和删除笔记。我们将通过设置 Django 项目、创建 Todo 模型、设计表单和视图来处理用户输入以及创建模板来显示任务来构建它。我们将逐步实现核心功能以有效地管理 todo 项。 Django ToDoWeb 服务 …

各种数据库,行式、列式、文档型、KV、时序、向量、图究竟怎么选?

慕然回首,发现这些年来涌现出了许多类型的数据库,今天抽空简单回顾一下,以便于后面用到时能快速选择。 1. 关系型数据库(行式) 关系型数据库(RDBMS),我们常说的数据库就是指的关系型数据库。 它的全称是关…

全志科技携飞凌嵌入式T527核心板亮相OpenHarmony开发者大会

近日,OpenHarmony开发者大会2025(OHDC.2025,以下简称“大会”)在深圳举办,全志科技作为OpenHarmony生态的重要合作伙伴受邀参会,并进行了《全志科技行业智能芯片OpenHarmony方案适配与认证经验分享》的主题…

事件驱动架构入门

主要参考资料: 软件架构-事件驱动架构: https://blog.csdn.net/liuxinghao/article/details/113923639 目录 简介事件队列事件日志事件收集器响应队列读事件 vs. 写事件 简介 事件驱动架构是一种系统或组件之间通过发送事件和响应事件彼此交互的架构风格。当某个事…

基于Web的濒危野生动物保护信息管理系统设计(源码+定制+开发)濒危野生动物监测与保护平台开发 面向公众参与的野生动物保护与预警信息系统

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

leetcode hot100刷题日记——30.两数之和

解答: 方法一:迭代 迭代大致过程就是: 算两条链表的当前位的和,加上上一位留下来的进位,就是新链表的当前位的数字。计算当前的进位。 这样,我们迭代需要的东西是:链表1,链表2&…

Fastapi 学习使用

Fastapi 学习使用 Fastapi 可以用来快速搭建 Web 应用来进行接口的搭建。 参考文章:https://blog.csdn.net/liudadaxuexi/article/details/141062582 参考文章:https://blog.csdn.net/jcgeneral/article/details/146505880 参考文章:http…