OpenCV 图像像素的读写操作

news2025/6/2 19:16:01


一、知识点
1、在OpenCV中,一切图像皆Mat。

2、对图像像素的读写操作,就是对Mat元素的遍历与访问。

3、对Mat使用数组方式遍历与访问。
  (1)、函数声明:
     

      template<typename _Tp> inline
      _Tp & Mat::at(int i0, int i1)


  (2)、参数说明:
      i0: 行索引。 从0开始,应小于image.rows。
      i1: 列索引。 从0开始,应小于image.cols。
      _Tp: 函数模板的类型参数,表示一个像素的数据类型。
  (3)、返回i0行i1列的元素引用,返回值是_Tp &,说明对返回值可读可写,可写会影响原始数据。
  (4)、灰度图像的遍历与访问举例:
     

      for (int row = 0; row < h; row++)
      {
          for (int col = 0; col < w; col++)
          {
                if (c == 1)
                {
                      //读
                      int pv = image.at<uchar>(row, col);
                      //写
                      image.at<uchar>(row, col) = 255 - pv;
                }
          }
      }


  (5)、彩色图像的遍历与访问举例:
   

      for (int row = 0; row < h; row++)
      {
            for (int col = 0; col < w; col++)
            {
                  if (c == 3)
                  {
                        //读
                        cv::Vec3b bgr = image.at<cv::Vec3b>(row, col);
                        //写
                        image.at<cv::Vec3b>(row, col)[0] = 255 - bgr[0];
                        image.at<cv::Vec3b>(row, col)[1] = 255 - bgr[1];
                        image.at<cv::Vec3b>(row, col)[2] = 255 - bgr[2];
                  }
            }
      }


      
4、对Mat使用指针方式遍历与访问。
  (1)、函数声明:
   

      template<typename _Tp> inline
      _Tp * Mat::ptr(int y)


  (2)、参数说明:
      y: 行索引。 从0开始,应小于image.rows。
      _Tp: 函数模板的类型参数,表示返回的指针指向的数据类型,通常是一个像素的数据类型。
  (3)、返回y行首个_Tp类型数据的地址,返回值是_Tp *,说明对返回值可读可写,可写会影响原始数据。
  (4)、灰度图像的遍历与访问举例:
     

      for (int row = 0; row < h; row++)
      {
          //返回row行首个元素的地址
          uchar * cur_row = image.ptr<uchar>(row);

          for (int col = 0; col < w; col++)
          {
              if (c == 1)
              {
                    int pv = *cur_row;
                    *cur_row = 255 - pv;
                    cur_row++;
              }
          }
      }


  (5)、彩色图像的遍历与访问举例:
   

      for (int row = 0; row < h; row++)
      {
          //返回row行首个元素的首个字节地址
          uchar * cur_row = image.ptr<uchar>(row);

          for (int col = 0; col < w; col++)
          {
              if (c == 3)
              {
                  int pv1 = *cur_row;
                  *cur_row = 255 - pv1;
                  cur_row++;
                  
                  int pv2 = *cur_row;
                  *cur_row = 255 - pv2;
                  cur_row++;
                  
                  int pv3 = *cur_row;
                  *cur_row = 255 - pv3;
                  cur_row++;
              }
          }
      }


      
5、对Mat使用指针方式遍历与访问2。
  (1)、函数声明:
     

      template<typename _Tp> inline
      _Tp * Mat::ptr(int i0, int i1)


  (2)、参数说明:
      i0: 行索引。 从0开始,应小于image.rows。
      i1: 列索引。 从0开始,应小于image.cols。
      _Tp: 函数模板的类型参数,表示一个像素的数据类型。
  (3)、返回i0行i1列的元素地址,返回值是_Tp *,说明对返回值可读可写,可写会影响原始数据。
  (4)、灰度图像的遍历与访问举例:
     

      for (int row = 0; row < h; row++)
      {
            for (int col = 0; col < w; col++)
            {
                  if (c == 1)
                  {
                        uchar * pv = image.ptr<uchar>(row, col);
                        *pv = 255 - *pv;
                  }
            }
      }


  (5)、彩色图像的遍历与访问举例:
     

      for (int row = 0; row < h; row++)
      {
            for (int col = 0; col < w; col++)
            {
                  if (c == 3)
                  {
                        cv::Vec3b * pv = image.ptr<cv::Vec3b>(row, col);
                        *pv = cv::Vec3b(255 - (*pv)[0], 255 - (*pv)[1], 255 - (*pv)[2]);
                  }
            }
      }


       
      
二、示例代码:

#include <iostream>
#include <opencv2/opencv.hpp>


void visit_by_array(cv::Mat & image)
{
    int w = image.cols;
    int h = image.rows;
    int c = image.channels();

    for (int row = 0; row < h; row++)
    {
        for (int col = 0; col < w; col++)
        {
            //灰度图像
            if (c == 1)
            {
                //读
                int pv = image.at<uchar>(row, col);
                //写
                image.at<uchar>(row, col) = 255 - pv;
            }
            //彩色图像
            else if (c == 3)
            {
                //读
                cv::Vec3b bgr = image.at<cv::Vec3b>(row, col);
                //写
                image.at<cv::Vec3b>(row, col)[0] = 255 - bgr[0];
                image.at<cv::Vec3b>(row, col)[1] = 255 - bgr[1];
                image.at<cv::Vec3b>(row, col)[2] = 255 - bgr[2];
            }
        }
    }
}


void visit_by_pointer(cv::Mat & image)
{
    int w = image.cols;
    int h = image.rows;
    int c = image.channels();
     
    for (int row = 0; row < h; row++)
    {
        uchar * cur_row = image.ptr<uchar>(row);

        for (int col = 0; col < w; col++)
        {
            //灰度图像
            if (c == 1)
            {
                //读
                int pv = *cur_row;
                //写
                *cur_row = 255 - pv;
                cur_row++;
            }
            //彩色图像
            else if (c == 3)
            {
                //读
                int pv1 = *cur_row;
                //写
                *cur_row = 255 - pv1;
                cur_row++;

                //读
                int pv2 = *cur_row;
                //写
                *cur_row = 255 - pv2;
                cur_row++;

                //读
                int pv3 = *cur_row;
                //写
                *cur_row = 255 - pv3;
                cur_row++;
            }
        }
    }
}


void visit_by_pointer2(cv::Mat & image)
{
    int w = image.cols;
    int h = image.rows;
    int c = image.channels();

    for (int row = 0; row < h; row++)
    {
        for (int col = 0; col < w; col++)
        {
            if (c == 1)
            {
                uchar * pv = image.ptr<uchar>(row, col);
                *pv = 255 - *pv;
            }
            else if (c == 3)
            {
                cv::Vec3b * pv = image.ptr<cv::Vec3b>(row, col);
                *pv = cv::Vec3b(255 - (*pv)[0], 255 - (*pv)[1], 255 - (*pv)[2]);
            }
        }
    }
}


int main()
{
    //数组方式访问灰度图像
    cv::Mat m1 = cv::imread("../images/1.png", cv::IMREAD_GRAYSCALE);
    if (m1.empty())
    {
        std::cout << "load m1 error..." << std::endl;
        return -1;
    }
    cv::imshow("数组方式访问前 m1", m1);
    visit_by_array(m1);
    cv::imshow("数组方式访问后 m1", m1);

    //数组方式访问彩色图像
    cv::Mat m2 = cv::imread("../images/1.png", cv::IMREAD_COLOR_BGR);
    if (m2.empty())
    {
        std::cout << "load m2 error..." << std::endl;
        return -1;
    }
    cv::imshow("数组方式访问前 m2", m2);
    visit_by_array(m2);
    cv::imshow("数组方式访问后 m2", m2);

    //指针方式1访问灰度图像
    cv::Mat m3 = cv::imread("../images/2.png", cv::IMREAD_GRAYSCALE);
    if (m3.empty())
    {
        std::cout << "load m3 error..." << std::endl;
        return -1;
    }
    cv::imshow("指针方式1访问前 m3", m3);
    visit_by_pointer(m3);
    cv::imshow("指针方式1访问后 m3", m3);

    //指针方式1访问彩色图像
    cv::Mat m4 = cv::imread("../images/2.png", cv::IMREAD_COLOR_BGR);
    if (m4.empty())
    {
        std::cout << "load m4 error..." << std::endl;
        return -1;
    }
    cv::imshow("指针方式1访问前 m4", m4);
    visit_by_pointer(m4);
    cv::imshow("指针方式1访问后 m4", m4);

    //指针方式2访问灰度图像
    cv::Mat m5 = cv::imread("../images/3.png", cv::IMREAD_GRAYSCALE);
    if (m5.empty())
    {
        std::cout << "load m5 error..." << std::endl;
        return -1;
    }
    cv::imshow("指针方式2访问前 m5", m5);
    visit_by_pointer2(m5);
    cv::imshow("指针方式2访问后 m5", m5);

    //指针方式2访问彩色图像
    cv::Mat m6 = cv::imread("../images/3.png", cv::IMREAD_COLOR_BGR);
    if (m6.empty())
    {
        std::cout << "load m6 error..." << std::endl;
        return -1;
    }
    cv::imshow("指针方式2访问前 m6", m6);
    visit_by_pointer2(m6);
    cv::imshow("指针方式2访问后 m6", m6);

    cv::waitKey(0);
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2393925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何制作全景VR图?

全景VR图&#xff0c;特别是720度全景VR&#xff0c;为观众提供一种沉浸式体验。 全景VR图能够捕捉场景的全貌&#xff0c;还能将多个角度的图片或视频无缝拼接成一个完整的全景视角&#xff0c;让观众在虚拟环境中自由探索。随着虚拟现实&#xff08;VR&#xff09;技术的飞速…

Flask与PostgreSQL交互教程

目录 1. 项目结构2. 环境准备2.1 安装依赖2.2 使用Docker启动PostgreSQL 3. 数据库配置3.1 环境变量配置3.2 数据库连接配置 4. 定义数据库模型5. 实现API接口5.1 创建用户5.2 获取所有用户5.3 获取单个用户5.4 更新用户5.5 删除用户 6. 运行应用7. API测试7.1 创建用户7.2 获取…

XJTU-SY轴承振动数据集的json自封装

1.最终形式的形式 不用再去翻文档找对应的故障类型&#xff0c;采样率等信息了&#xff0c;所有的信息自包含在.json文件里&#xff0c;15个测试例&#xff0c;一个测试例对应一整个.json文件。 {"dataset": {"name": "XJTU-SY_Bearing_Datasets&quo…

Spring AI 系列2: Advisors增强器简介

一、Advisors简介 1.1 Advisors定义 Advisors 是在 AI 应用程序中处理请求和响应的拦截器。我们可以使用它们为提示流程设置额外的功能。例如&#xff0c;可以建立聊天历史、排除敏感词或为每个请求添加额外的上下文。 Spring AI的Advisor&#xff0c;本质上是一个拦截…

通过Func实现飞书应用通知消息加急处理

前言 在现代企业运作中&#xff0c;及时响应告警信息对保障系统的稳定性和业务的连续性至关重要。随着业务的数字化转型&#xff0c;越来越多的企业依赖于复杂的技术架构&#xff0c;这使得故障和异常事件的及时处理变得愈发重要。传统的告警通知方式往往存在响应不及时、信息…

【目标检测】【AAAI-2022】Anchor DETR

Anchor DETR&#xff1a; Query Design for Transformer-Based Object Detection 锚点DETR&#xff1a;基于Transformer的目标检测查询设计 论文链接 代码链接 摘要 在本文中&#xff0c;我们提出了一种基于Transformer的目标检测新型查询设计。此前的Transformer检测器中&am…

智慧工厂整体解决方案

该方案围绕智能工厂建设,阐述其基于工业 4.0 和数字化转型需求,通过物联网、大数据、人工智能等技术实现生产自动化、数据化管理及联网协同的特点。建设步骤包括评估现状、设定目标、制定方案、测试调整、实施计划及持续改进,需整合 MES、ERP 等软件系统与传感器、机器人等硬…

秋招Day12 - 计算机网络 - TCP

详细说一下TCP的三次握手机制 TCP的三次握手机制是为了在两个主机之间建立可靠的连接&#xff0c;这个机制确保两端的通信是同步的&#xff0c;并且在开始传输数据前&#xff0c;双方都做好了要通信的准备。 说说SYN的概念&#xff1f; SYN 是 TCP 协议中用来建立连接的一个标…

vueflow

自定义节点&#xff0c;自定义线&#xff0c;具体细节还未完善&#xff0c;实现效果&#xff1a; 1.安装vueflow 2.目录如下 3. index.vue <script setup> import { ref } from vue import { VueFlow, useVueFlow } from vue-flow/core import { Background } from vue-…

LearnOpenGL-笔记-其十一

Normal Mapping 又到了介绍法线贴图的地方&#xff0c;我感觉我已经写了很多遍了... 法线贴图用最简单的话来介绍的话&#xff0c;就是通过修改贴图对应物体表面的法线来修改光照效果&#xff0c;从而在不修改物体实际几何形状的前提下实现不同于物体几何形状的视觉效果。 因…

openppp2 -- 1.0.0.25225 优化多线接入运营商路由调配

本文涉及到的内容&#xff0c;涉及到上个发行版本相关内容&#xff0c;人们在阅读本文之前&#xff0c;建议应当详细阅读上个版本之中的VBGP技术相关的介绍。 openppp2 -- 1.0.0.25196 版本新增的VBGP技术-CSDN博客 我们知道在现代大型的 Internet 网络服务商&#xff0c;很多…

详细到用手撕transformer下半部分

之前我们讨论了如何实现 Transformer 的核心多头注意力机制&#xff0c;那么这期我们来完整地实现整个 Transformer 的编码器和解码器。 Transformer 架构最初由 Vaswani 等人在 2017 年的论文《Attention Is All You Need》中提出&#xff0c;专为序列到序列&#xff08;seq2s…

【Sqoop基础】Sqoop生态集成:与HDFS、Hive、HBase等组件的协同关系深度解析

目录 1 Sqoop概述与大数据生态定位 2 Sqoop与HDFS的深度集成 2.1 技术实现原理 2.2 详细工作流程 2.3 性能优化实践 3 Sqoop与Hive的高效协同 3.1 集成架构设计 3.2 数据类型映射处理 3.3 案例演示 4 Sqoop与HBase的实时集成 4.1 数据模型转换挑战 4.2 详细集成流程…

MySQL + CloudCanal + Iceberg + StarRocks 构建全栈数据服务

简述 在业务数据快速膨胀的今天&#xff0c;企业对 低成本存储 与 实时查询分析能力 的需求愈发迫切。 本文将带你实战构建一条 MySQL 到 Iceberg 的数据链路&#xff0c;借助 CloudCanal 快速完成数据迁移与同步&#xff0c;并使用 StarRocks 完成数据查询等操作&#xff0c…

截屏精灵:轻松截屏,高效编辑

在移动互联网时代&#xff0c;截图已经成为我们日常使用手机时的一项基本操作。无论是记录重要信息、分享有趣内容&#xff0c;还是进行学习和工作&#xff0c;一款好用的截图工具都能极大地提升我们的效率。截屏精灵就是这样一款功能强大、操作简单的截图工具&#xff0c;它不…

【JavaWeb】基本概念、web服务器、Tomcat、HTTP协议

目录 1. 基本概念1.1 基本概念1.2 web应用程序1.3 静态web1.4 动态web 2. web服务器3. tomcat详解3.1 安装3.2 启动3.3 配置3.3.1 配置启动的端口号3.3.2 配置主机的名称3.3.3 其他常用配置项日志配置数据源配置安全配置 3.4 发布一个网站 4. Http协议4.1 什么是http4.2 http的…

云计算Linux Rocky day02(安装Linux系统、设备表示方式、Linux基本操作)

云计算Linux Rocky day02&#xff08;安装Linux系统、设备表示方式、Linux基本操作&#xff09; 目录 云计算Linux Rocky day02&#xff08;安装Linux系统、设备表示方式、Linux基本操作&#xff09;1、虚拟机VMware安装Rocky2、Linux命令行3、Linux Rocky修改字体大小和背景颜…

在 ODROID-H3+ 上安装 Win11 系统

在 ODROID-H3 上安装 Windows 11 系统。 以下是完整的步骤&#xff0c;包括 BIOS 设置、U 盘制作、安装和驱动处理&#xff0c;全程不保留之前的系统数据。 ✅ 准备工作 1. 准备一个 ≥8GB 的 USB 启动盘 用另一台电脑制作 Windows 11 安装盘。 &#x1f449; 推荐工具&…

使用el-input数字校验,输入汉字之后校验取消不掉

先说说复现方式 本来input是只能输入数字的&#xff0c;然后你不小心输入了汉字&#xff0c;触发校验了&#xff0c;然后这时候&#xff0c;你发现校验取消不掉了 就这样了 咋办啊&#xff0c;你一看校验没错啊&#xff0c;各种number啥的也写了,发现没问题啊 <el-inputv…

Docker容器启动失败的常见原因分析

我们在开发部署的时候&#xff0c;用 Docker 打包环境&#xff0c;理论上是“我装好了你就能跑”。但理想很丰满&#xff0c;现实往往一 docker run 下去就翻车了。 今天来盘点一下我实际工作中经常遇到的 Docker 容器启动失败的常见原因&#xff0c;顺便给点 debug 的小技巧&a…