Python训练营打卡Day39

news2025/7/21 2:33:34

DAY 39 图像数据与显存

知识点回顾
1.图像数据的格式:灰度和彩色数据
2.模型的定义
3.显存占用的4种地方
a.模型参数+梯度参数
b.优化器参数
c.数据批量所占显存
d.神经元输出中间状态
4.batchisize和训练的关系

作业:今日代码较少,理解内容即可
@浙大疏锦行


DAY 39

一、 图像数据的介绍

1.1 灰度图像

从这里开始进入到了图像数据相关的部分,默认有计算机视觉相关的知识。

昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
# 设置随机种子,确保结果可复现
torch.manual_seed(42)

# 1. 数据预处理,该写法非常类似于管道pipeline
# transforms 模块提供了一系列常用的图像预处理操作

# 先归一化,再标准化
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt

# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)
# 随机选择一张图片,可以重复运行,每次都会随机选择
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item() # 随机选择一张图片的索引
# len(train_dataset) 表示训练集的图片数量;size=(1,)表示返回一个索引;torch.randint() 函数用于生成一个指定范围内的随机数,item() 方法将张量转换为 Python 数字
image, label = train_dataset[sample_idx] # 获取图片和标签
# 可视化原始图像(需要反归一化)
def imshow(img):
    img = img * 0.3081 + 0.1307  # 反标准化
    npimg = img.numpy()
    plt.imshow(npimg[0], cmap='gray') # 显示灰度图像
    plt.show()

print(f"Label: {label}")
imshow(image)

在这里插入图片描述

上述是昨天的代码,我们介绍了图像数据的预处理,这是我们首次接触图像数据,他和之前的结构化数据有什么差异点呢?
结构化数据(如表格)的形状通常是 (样本数, 特征数),例如 (1000, 5) 表示 1000 个样本,每个样本有 5 个特征。图像数据的形状更复杂,需要保留空间信息(高度、宽度、通道),因此不能直接用一维向量表示。其中颜色信息往往是最开始输入数据的通道的含义,因为每个颜色可以用红绿蓝三原色表示,因此一般输入数据的通道数是 3。

维度索引含义数值说明
0通道数(Channels)1 表示这是一张灰度图(仅有一个颜色通道,如黑白照片)。
如果是彩色图(如RGB),通道数为 3
1高度(Height)28 表示图像的垂直像素数为28像素。
2宽度(Width)28 表示图像的水平像素数为28像素。

MNIST 数据集是手写数字的 灰度图像,每个像素点的取值范围为 0-255(黑白程度),因此 通道数为 1。图像尺寸统一为 28×28 像素。

# 打印下图片的形状
image.shape

在这里插入图片描述

1.2 彩色图像

在 PyTorch 中,图像数据的形状通常遵循 (通道数, 高度, 宽度) 的格式(即 Channel First 格式),这与常见的 (高度, 宽度, 通道数)(Channel Last,如 NumPy 数组)不同。—注意顺序关系,

注意点:

  1. 如果用matplotlib库来画图,需要转换下顺序,我们后续介绍
  2. 模型输入通常需要 批次维度(Batch Size),形状变为 (批次大小, 通道数, 高度, 宽度)。例如,批量输入 10 张 MNIST 图像时,形状为 (10, 1, 28, 28)。
# 打印一张彩色图像,用cifar-10数据集
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置随机种子确保结果可复现
torch.manual_seed(42)
# 定义数据预处理步骤
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 加载CIFAR-10训练集
trainset = torchvision.datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

# 创建数据加载器
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=4,
    shuffle=True
)

# CIFAR-10的10个类别
classes = ('plane', 'car', 'bird', 'cat', 'deer', 
           'dog', 'frog', 'horse', 'ship', 'truck')

# 随机选择一张图片
sample_idx = torch.randint(0, len(trainset), size=(1,)).item()
image, label = trainset[sample_idx]

# 打印图片形状
print(f"图像形状: {image.shape}")  # 输出: torch.Size([3, 32, 32])
print(f"图像类别: {classes[label]}")

# 定义图像显示函数(适用于CIFAR-10彩色图像)
def imshow(img):
    img = img / 2 + 0.5  # 反标准化处理,将图像范围从[-1,1]转回[0,1]
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))  # 调整维度顺序:(通道,高,宽) → (高,宽,通道)
    plt.axis('off')  # 关闭坐标轴显示
    plt.show()

# 显示图像
imshow(image)

在这里插入图片描述

注意,因为这里设计到图像的显示,所以就需要调整维度顺序:(通道,高,宽) → (高,宽,通道)
在这里插入图片描述

介绍下超参数的优化 优化器

优化手写数字问题 引出cnn

如何计算显存一次性可以读取多少张

随机种子

二、 图像相关的神经网络的定义

考虑课程内容的推进,今日的内容只提定义,不涉及训练和测试过程

2.1 黑白图像模型的定义

# 先归一化,再标准化
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt

# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
root=‘./data’,
train=False,
transform=transform
)

# 定义两层MLP神经网络
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量
        self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元
        self.relu = nn.ReLU()  # 激活函数
        self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)
        
    def forward(self, x):
        x = self.flatten(x)  # 展平图像
        x = self.layer1(x)   # 第一层线性变换
        x = self.relu(x)     # 应用ReLU激活函数
        x = self.layer2(x)   # 第二层线性变换,输出logits
        return x

# 初始化模型
model = MLP()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)

from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸

在这里插入图片描述

我们关注和之前结构化MLP的差异

  1. 输入需要展平操作

MLP 的输入层要求输入是一维向量,但 MNIST 图像是二维结构(28×28 像素),形状为 [1, 28, 28](通道 × 高 × 宽)。nn.Flatten()展平操作 将二维图像 “拉成” 一维向量(784=28×28 个元素),使其符合全连接层的输入格式。

其中不定义这个flatten方法,直接在前向传播的过程中用 x = x.view(-1, 28 * 28) 将图像展平为一维向量也可以实现

  1. 输入数据的尺寸包含了通道数input_size=(1, 28, 28)

  2. 参数的计算

  • 第一层 layer1(全连接层)

权重参数:输入维度 × 输出维度 = 784 × 128 = 100,352

偏置参数:输出维度 = 128

合计:100,352 + 128 = 100,480

  • 第二层 layer2(全连接层)

权重参数:输入维度 × 输出维度 = 128 × 10 = 1,280

偏置参数:输出维度 = 10
合计:1,280 + 10 = 1,290

  • 总参数:100,480(layer1) + 1,290(layer2) = 101,770

2.2 彩色图像模型的定义

class MLP(nn.Module):
    def __init__(self, input_size=3072, hidden_size=128, num_classes=10):
        super(MLP, self).__init__()
        # 展平层:将3×32×32的彩色图像转为一维向量
        # 输入尺寸计算:3通道 × 32高 × 32宽 = 3072
        self.flatten = nn.Flatten()
        
        # 全连接层
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  # 输出层
        
    def forward(self, x):
        x = self.flatten(x)  # 展平:[batch, 3, 32, 32] → [batch, 3072]
        x = self.fc1(x)      # 线性变换:[batch, 3072] → [batch, 128]
        x = self.relu(x)     # 激活函数
        x = self.fc2(x)      # 输出层:[batch, 128] → [batch, 10]
        return x

# 初始化模型
model = MLP()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)

from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(3, 32, 32))  # CIFAR-10 彩色图像(3×32×32)

在这里插入图片描述

  • 第一层 layer1(全连接层)

权重参数:输入维度 × 输出维度 = 3072 × 128 = 393,216

偏置参数:输出维度 = 128

合计:393,216 + 128 = 393,344

  • 第二层 layer2(全连接层)

权重参数:输入维度 × 输出维度 = 128 × 10 = 1,280

偏置参数:输出维度 = 10

合计:1,280 + 10 = 1,290

  • 总参数:393,344(layer1) + 1,290(layer2) = 394,634

2.3 模型定义与batchsize的关系

实际定义中,输入图像还存在batchsize这一维度

在 PyTorch 中,模型定义和输入尺寸的指定不依赖于 batch_size,无论设置多大的 batch_size,模型结构和输入尺寸的写法都是不变的。

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten() # nn.Flatten()会将每个样本的图像展平为 784 维向量,但保留 batch 维度。
        self.layer1 = nn.Linear(784, 128)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(128, 10)
        
    def forward(self, x):
        x = self.flatten(x)  # 输入:[batch_size, 1, 28, 28] → [batch_size, 784]
        x = self.layer1(x)   # [batch_size, 784] → [batch_size, 128]
        x = self.relu(x)
        x = self.layer2(x)   # [batch_size, 128] → [batch_size, 10]
        return x

PyTorch 模型会自动处理 batch 维度(即第一维),无论 batch_size 是多少,模型的计算逻辑都不变。batch_size 是在数据加载阶段定义的,与模型结构无关。

summary(model, input_size=(1, 28, 28))中的input_size不包含 batch 维度,只需指定样本的形状(通道 × 高 × 宽)。

总结:batch_size与模型定义的关系**

组件是否涉及batch_size示例代码
模型定义❌ 完全无关class MLP(nn.Module) 中无需提及batch_size
torchsummary❌ 只需要样本形状(不含batch维度)summary(model, input_size=(1, 28, 28))
DataLoader✅ 在此设置batch_sizeDataLoader(dataset, batch_size=64)
训练循环✅ 数据自动以batch形式输入模型for data, target in train_loader: ...

三、显存占用的主要组成部分

昨天说到了在面对数据集过大的情况下,由于无法一次性将数据全部加入到显存中,所以采取了分批次加载这种方式。即一次只加载一部分数据,保证在显存的范围内。

那么显存设置多少合适呢?如果设置的太小,那么每个batchsize的训练不足以发挥显卡的能力,浪费计算资源;如果设置的太大,会出现OOT(out of memory)

显存一般被以下内容占用:

  1. 模型参数与梯度:模型的权重(Parameters)和对应的梯度(Gradients)会占用显存,尤其是深度神经网络(如 Transformer、ResNet 等),一个 1 亿参数的模型(如 BERT-base),单精度(float32)参数占用约 400MB(1e8×4Byte),加上梯度则翻倍至 800MB(每个权重参数都有其对应的梯度)。

  2. 部分优化器(如 Adam)会为每个参数存储动量(Momentum)和平方梯度(Square Gradient),进一步增加显存占用(通常为参数大小的 2-3 倍)

  3. 其他开销。

oom处理方案

下面以手写数据集为例
from torch.utils.data import DataLoader

# 定义训练集的数据加载器,并指定batch_size
train_loader = DataLoader(
    dataset=train_dataset,  # 加载的数据集
    batch_size=64,          # 每次加载64张图像
    shuffle=True            # 训练时打乱数据顺序
)

# 定义测试集的数据加载器(通常batch_size更大,减少测试时间)
test_loader = DataLoader(
    dataset=test_dataset,
    batch_size=1000,
    shuffle=False
)

手写数据集(MNIST)和当前 MLP 模型,显存占用的计算可以简化为以下几个部分。

3.1 模型参数与梯度(FP32 精度)

参数总量:101,770 个参数

  • 1字节(Byte)= 8位(bit),是计算机存储的最小寻址单位。
  • 位(bit)是二进制数的最小单位(0或1),例如0b1010表示4位二进制数。
  • 1KB=1024字节;1MB=1024KB=1,048,576字节

常见数据类型的字节占用

数据类型位数(bit)字节(Byte)数值范围(近似)
float32(单精度浮点数)324±1.7×10^38
float64(双精度浮点数)648±1.8×10^308
uint8(无符号8位整数)810~255
  • MNIST数据集的原始图像像素值为0-255的整数(uint8类型,占1字节),表示灰度值(0=黑,255=白)。
  • 但PyTorch的transforms.ToTensor()会将其归一化到[0, 1]范围,并转换为 float32类型(浮点型更适合神经网络计算)。

计算示例:单张MNIST图像的显存占用

  1. 原始像素值(uint8,未转换时)

    • 尺寸:28×28像素
    • 单像素占用:1字节(uint8)
    • 总占用:28×28×1 = 784字节 ≈ 0.766 KB
  2. 转换为float32张量后

    • 尺寸:1×28×28(通道×高×宽)
    • 单像素占用:4字节(float32)
    • 总占用:1×28×28×4 = 3136字节 ≈ 3.06 KB

单精度(float32)参数占用:101,770 × 4 Byte ≈ 403 KB

梯度是损失函数对模型参数的导数(∂Loss/∂Weight),用于指示参数更新的方向和幅度。梯度是损失函数对模型参数的导数(∂Loss/∂Weight),用于指示参数更新的方向和幅度。因此在默认情况下,梯度的数据类型和数目与参数相同。

梯度占用(反向传播时):与参数相同,合计约 806 KB

3.2 优化器状态

SGD
  • SGD优化器不存储额外动量,因此无额外显存占用。
  • SGD 随机梯度下降,最基础的优化器,直接沿梯度反方向更新参数。
  • 参数更新公式:w = w - learning_rate * gradient
Adam
  • Adam优化器:自适应学习率优化器,结合了动量(Momentum)和梯度平方的指数移动平均。
  • 每个参数存储动量(m)和平方梯度(v),占用约 101,770 × 8 Byte ≈ 806 KB
  • 动量(m):每个参数对应一个动量值,数据类型与参数相同(float32),占用 403 KB。
  • 梯度平方(v):每个参数对应一个梯度平方值,数据类型与参数相同(float32),占用 403 KB。

3.3 数据批量(batch_size)的显存占用

  • 单张图像尺寸1×28×28(通道×高×宽),归一化转换为张量后为float32类型
    • 单张图像显存占用:1×28×28×4 Byte = 3,136 Byte ≈ 3 KB
  • 批量数据占用batch_size × 单张图像占用
    • 例如:batch_size=64 时,数据占用为 64×3 KB ≈ 192 KB
    • batch_size=1024 时,数据占用为 1024×3 KB ≈ 3 MB

3.4. 前向/反向传播中间变量

  • 对于两层MLP,中间变量(如layer1的输出)占用较小:
    • batch_size×128维向量:batch_size×128×4 Byte = batch_size×512 Byte
    • 例如batch_size=1024时,中间变量约 512 KB
      以SGD为例,此时其他参数占用固定,batchsize会影响显存占用
batch_size数据占用中间变量总显存占用(近似)
64192 KB32 KB~1 MB
256768 KB128 KB~1.7 MB
10243 MB512 KB~4.5 MB
409612 MB2 MB~15 MB
在 PyTorch 中,在使用DataLoader加载数据时,如果不指定batch_size参数,默认值是1

,即每次迭代返回一个样本。这与一次性使用全部数据进行训练是完全不同的概念。如果想要一次性使用全部数据进行训练,需要手动将batch_size设置为数据集的大小,但对于大型数据集,这样做通常会导致内存不足,因为一次性将所有数据加载到内存中可能会超出硬件的内存限制。

大规模数据时,通常从16开始测试,然后逐渐增加,确保代码运行正常且不报错,直到出现 内存不足(OOM)报错 或训练效果下降,此时选择略小于该值的 batch_size。

训练时候搭配 nvidia-smi 监控显存占用,合适的 batch_size = 硬件显存允许的最大值 × 0.8(预留安全空间),并通过训练效果验证调整。
补充说明: batchsize对于训练的影响

在深度学习中,使用较大的 batch_size(批量大小)相比单样本训练(batch_size=1)有以下核心优势

  • 并行计算能力最大化,减小训练时间;且大幅减少更新次数
  • 梯度方向更准确,单样本训练的梯度仅基于单个数据点,可能包含大量噪声(尤其是数据分布不均或存在异常值时)。大 batch_size 的梯度是多个样本的平均值,能抵消单个样本的随机性,梯度方向更接近真实分布的 “全局最优方向”。会让训练过程更稳定,波动更小
场景计算过程参数更新方式
batch_size=1计算1个样本的损失 $ L_1 $ → 反向传播得到梯度 $ g_1 $直接用 $ g_1 $ 更新参数
batch_size=12计算12个样本的损失 $ L_1, L_2, …, L_{12} $ → 分别求梯度 $ g_1, g_2, …, g_{12} $ → 计算平均梯度 $ \bar{g} = \frac{g_1 + g_2 + … + g_{12}}{12} $用平均梯度 $ \bar{g} $ 更新参数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2391824.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UE5蓝图中播放背景音乐和使用代码播放声音

UE5蓝图中播放背景音乐 1.创建背景音乐Cube 2.勾选looping 循环播放背景音乐 3.在关卡蓝图中 Event BeginPlay-PlaySound2D Sound选择自己创建的Bgm_Cube 蓝图播放声音方法二: 使用代码播放声音方法一 .h文件中 头文件引用 #include "Kismet/GameplayS…

AI 赋能数据可视化:漏斗图制作的创新攻略

在数据可视化的广阔天地里,漏斗图以其独特的形状和强大的功能,成为展示流程转化、分析数据变化的得力助手。传统绘制漏斗图的方式往往需要耗费大量时间和精力,对使用者的绘图技能和软件操作熟练度要求颇高。但随着技术的蓬勃发展,…

用 Python 模拟下雨效果

用 Python 模拟下雨效果 雨天别有一番浪漫情怀:淅淅沥沥的雨滴、湿润的空气、朦胧的光影……在屏幕上也能感受下雨的美妙。本文将带你用一份简单的 Python 脚本,手把手实现「下雨效果」动画。文章深入浅出,零基础也能快速上手,完…

C#对象集合去重的一种方式

前言 现在AI越来越强大了,有很多问题其实不需要在去各个网站上查了,直接问AI就好了,但是呢,AI给的代码可能能用,也可能需要调整,但是自己肯定是要会的,所以还是总结一下吧。 问题 如果有一个…

在ROS2(humble)+Gazebo+rqt下,实时显示仿真无人机的相机图像

文章目录 前言一、版本检查检查ROS2版本 二、步骤1.下载对应版本的PX4(1)检查PX4版本(2)修改文件名(3)下载正确的PX4版本 2.下载对应版本的Gazebo(1)检查Gazebo版本(2)卸载不正确的Gazebo版本(3)下载正确的Gazebo版本 3.安装bridge包4.启动 总结 前言 在ROS2的环境下&#xff…

github双重认证怎么做

引言 好久没登陆github了, 今天登陆github后,提醒进行2FA认证。 查看了github通知,自 2023 年 3 月起,GitHub 要求所有在 GitHub.com 上贡献代码的用户启用一种或多种形式的双重身份验证 (2FA)。 假如你也遇到这个问题&#xf…

数据的类型——认识你的数据

第02篇:数据的类型——认识你的数据 写在前面:嗨,大家好!我是蓝皮怪。在上一篇文章中,我们聊了统计学的基本概念,今天我们来深入了解一个非常重要的话题——数据的类型。你可能会想:"数据就…

第五十二节:增强现实基础-简单 AR 应用实现

引言 增强现实(Augmented Reality, AR)是一种将虚拟信息叠加到真实世界的技术,广泛应用于游戏、教育、工业维护等领域。与传统虚拟现实(VR)不同,AR强调虚实结合,用户无需完全沉浸到虚拟环境中。本文将通过Python和OpenCV库,从零开始实现一个基础的AR应用:在检测到特定…

LLaMaFactory 微调QwenCoder模型

步骤一:准备LLamaFactory环境 首先,让我们尝试使用github的方式克隆仓库: git config --global http.sslVerify false && git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git # 创建新环境,指定 Python 版本(以 3.…

【最新版】Arduino IDE的安装入门Demo

1、背景说明 1、本教程编写日期为2025-5-24 2、Arduino IDE的版本为:Arduino IDE 2.3.6 3、使用的Arduino为Arduino Uno 1、ArduinoIDE的安装 1、下载。网址如下:官网 2、然后一路安装即可。 期间会默认安装相关驱动,默认安装即可。 3、安…

不起火,不爆炸,高速摄像机、数字图像相关DIC技术在动力电池新国标安全性能测试中的应用

2026年7月1日,我国将正式实施GB38031-2025《电动汽车用动力蓄电池安全要求》——这项被称为“史上最严电池安全令”的新国标,首次将“热失控不蔓延、不起火、不爆炸”从企业技术储备上升为强制性要求,标志着电池安全进入“零容忍”时代&#…

thinkadmin中使用layui日期选择器,数据库存储时间戳

form.html <div class="layui-form-item label-required-prev" id="jiezhi_time-div">

WSL中ubuntu通过Windows带代理访问github

WSL中ubuntu通过Windows带代理访问github 前言: WSL是Windows下的ubuntu访问工具&#xff0c;目前无法访问外网&#xff0c;因此需要配置一下。 步骤一 代理中进行如下设置: 步骤二 ubuntu22.04中修改配置 使用如下命令获取IP地址&#xff1a; ip route | grep default | aw…

RISC-V特权模式及切换

1 RISC-V特权模式基本概念 1.1 RISC-V特权模式介绍 RISC-V 指令集架构&#xff08;ISA&#xff09;采用多特权级别设计作为其核心安全机制&#xff0c;通过层次化的权限管理实现系统资源的隔离与保护。该架构明确定义了四个层次化的特权模式&#xff0c;按照权限等级由高至低…

【深度学习】11. Transformer解析: Self-Attention、ELMo、Bert、GPT

Transformer 神经网络 Self-Attention 的提出动机 传统的循环神经网络&#xff08;RNN&#xff09;处理序列信息依赖时间步的先后顺序&#xff0c;无法并行&#xff0c;而且在捕捉长距离依赖关系时存在明显困难。为了解决这些问题&#xff0c;Transformer 引入了 Self-Attent…

4060显卡什么水平 4060显卡参数介绍

NVIDIA的GeForce RTX 40系列显卡基于最新的Ada Lovelace架构&#xff0c;提供了前所未有的图形处理能力和效率。其中&#xff0c;RTX 4060定位中高端市场&#xff0c;针对那些寻求卓越性能同时又注重成本效益的用户群体。那么&#xff0c;4060显卡什么水平呢&#xff1f;本文将…

技术为器,服务为本:AI时代的客服价值重构

在智能化浪潮中&#xff0c;大语言模型的出现为客户服务行业注入了全新动能。然而技术创新的价值不在于技术本身&#xff0c;而在于其赋能服务的深度与广度。AI对于我们来说&#xff0c;如同发动机之于汽车&#xff0c;重要的不是引擎参数&#xff0c;而是整车带给用户的驾驶体…

EasyVoice:开源的文本转语音工具,让文字“开口说话“

名人说&#xff1a;博观而约取&#xff0c;厚积而薄发。——苏轼《稼说送张琥》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、EasyVoice是什么&#xff1f;1. 核心特性一览2. 技术架构概览 二、安装部署指南…

扫地机产品异物进入吸尘口堵塞异常检测方案

扫地机产品异物进入吸尘口堵塞异常的检测方案 文章目录 扫地机产品异物进入吸尘口堵塞异常的检测方案一.背景二.石头的音频异常检测的方案2.1 音频检测触发点2.1.1时间周期2.1.2根据清洁机器人清扫模式或清扫区域污渍类型,即当清扫模式为深度清洁模式 或清扫区域污渍类型为重度…

C++并集查找

前言 C图论 C算法与数据结构 本博文代码打包下载 基本概念 并查集&#xff08;Union-Find&#xff09;是一种用于处理动态连通性&#xff08;直接或间接相连&#xff09;的数据结构&#xff0c;主要支持两种操作&#xff1a;union 和 find。通过这两个基本操作&#xff0c;可…