自回归图像编辑 EditAR: Unified Conditional Generation with Autoregressive Models

news2025/5/22 20:04:25

Paperhttps://arxiv.org/pdf/2501.04699

Code (coming soon)

目录

方法

实验


EditAR是一个统一的自回归框架,用于各种条件图像生成任务——图像编辑、深度到图像、边缘到图像、分割到图像。

next-token预测的功效尚未被证明用于图像编辑。

EditAR主要构建在Llamagen的基础上,这是一种基于Llama2架构的文本到图像自回归模型。然而,由于缺少条件图像输入,Llamagen不支持图像处理或转换等任务。

贡献:

(1)我们引入了一个新的自回归框架EditAR,它在各种图像处理和图像翻译任务上进行了联合训练,并展示了建立统一的条件图像生成模型的潜力。

(2)在自回归模型的学习中引入蒸馏损失来增强语义。

(3)实验表明,该方法在纹理操作、对象替换、对象移除、局部编辑、canny到image、depth到image和segmentation到image等任务上表现出了较强的性能。

方法

一般情况下,自回归模型将文本到图像生成作为序列到序列建模任务。一种常见的方法包括两个主要组件:将图像转换为离散令牌的VQAutoencoder和对这些令牌的分类分布进行建模的自回归Transformer。

EditAR:

图2:可以采用各种类型的图像条件来执行图像编辑或变换。图像标记索引和文本嵌入都被输入到自回归Transformer F以预测目标标记索引s。为了增强文本到图像的对齐,在训练期间引入蒸馏损失。输出序列s最后在推理期间经由VQ解码器DI解码成真实图像。

描述图像模态:通过修改文本输入的措辞,例如,从深度图生成图像,使用“给定深度,按照指令生成图像:<INSTRUCTION>“,指令是对生成图像的内容的描述。

蒸馏:从DINOv2视觉特征编码器中引入了蒸馏损失\varepsilon_{distill}。对齐网络A由单个卷积层组成,用于将自回归模型F(·)的嵌入空间的维度与基础模型的嵌入空间的维度相匹配。

对于F和Edistill,从最后一个隐藏层提取的特征用于计算此损失。从经验上讲,我们发现这种设计可以改善文本到图像的对齐。

训练和推理:L_CE是用于训练下一个令牌预测模型的交叉熵损失。

在5%的训练样本中设置c_\mathcal{T} = \phi, 在另外5%的训练样本中设置c_{\mathcal{I}_c} = \phi, 在最后5%的训练样本中设置c_{\mathcal{I}_c} = \phi,c_\mathcal{T} = \phi。在推理时,只给出c_{\mathcal{I}_c}c_{\mathcal{T}}作为输入,并顺序预测集合s。

在推理过程中使用无分类器指导:

实验

数据集:

我们使用来自SEED-Data-Edit-Unsplash的1.5M个示例,用于一系列图像编辑任务,包括修改样式,对象,颜色和材料。为了进一步支持对象添加和删除等编辑操作,我们添加了具有180万个示例的PIPE数据集。

在训练过程中,我们以50%的概率随机翻转每一对,并相应地将编辑指令从“添加”调整为“删除”。

对于图像转换任务,我们遵循ControlNet++ ,使用COCOStuff进行分割掩模到图像的转换,MultiGen-20M用于canny边缘和深度到图像任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2383353.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

React Flow 中 Minimap 与 Controls 组件使用指南:交互式小地图与视口控制定制(含代码示例)

本文为《React Agent&#xff1a;从零开始构建 AI 智能体》专栏系列文章。 专栏地址&#xff1a;https://blog.csdn.net/suiyingy/category_12933485.html。项目地址&#xff1a;https://gitee.com/fgai/react-agent&#xff08;含完整代码示​例与实战源&#xff09;。完整介绍…

STM32之串口通信WIFI上云

一、W模块的原理与应用 基本概念 如果打算让硬件设备可以通过云服务器进行通信&#xff08;数据上报/指令下发&#xff09;&#xff0c;像主流的云服务器有阿里云、腾讯云、华为云&#xff0c;以及其他物联网云平台&#xff1a;巴法云.......&#xff0c;硬件设备需要通过TCP…

PCB智能报价系统——————仙盟创梦IDE

软件署名 代码贡献&#xff1a; 紫金电子科技有限公司 文案正路&#xff1a;cybersnow 正文 对企业的竞争力有着深远影响。传统的 PCB 报价方式往往依赖人工核算&#xff0c;不仅耗时较长&#xff0c;还容易出现误差。随着科技的发展&#xff0c;PCB 自动报价系统应运而生&a…

LeetCode-链表-合并两个有序链表

LeetCode-链表-合并两个有序链表 ✏️ 关于专栏&#xff1a;专栏用于记录 prepare for the coding test。 文章目录 LeetCode-链表-合并两个有序链表&#x1f4dd; 合并两个有序链表&#x1f3af;题目描述&#x1f50d; 输入输出示例&#x1f9e9;题目提示&#x1f9ea;AC递归&…

sqli-labs靶场29-31关(http参数污染)

目录 前言 less29&#xff08;单引号http参数污染&#xff09; less30&#xff08;双引号http参数污染&#xff09; less31(双引号括号http参数污染) 前言 在JSP中&#xff0c;使用request.getParameter("id")获取请求参数时&#xff0c;如果存在多个同名参数&a…

JVM 垃圾回收机制深度解析(含图解)

JVM 垃圾回收机制深度解析&#xff08;含图解&#xff09; 一、垃圾回收整体流程 垃圾回收图解 #mermaid-svg-KPtxlwWntQx8TOj3 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-KPtxlwWntQx8TOj3 .error-icon{fill…

如何利用 Conda 安装 Pytorch 教程 ?

如何利用 Conda 安装 Pytorch 教程 &#xff1f; 总共分为六步走&#xff1a; &#xff08;1&#xff09;第一步&#xff1a;验证conda 环境是否安装好&#xff1f; 1) conda -V2) conda --version&#xff08;2&#xff09;第二步&#xff1a;查看现有环境 conda env list…

uniapp vue 开发微信小程序 分包梳理经验总结

嗨&#xff0c;我是小路。今天主要和大家分享的主题是“uniapp vue 开发微信小程序 分包梳理经验总结”。 在使用 UniAppvue框架开发微信小程序时&#xff0c;当项目比较大的时候&#xff0c;经常需要分包加载。它有助于控制主包的大小&#xff0c;从而提升小程序的启…

什么是VR展示?VR展示的用途

随着科技的迅猛发展&#xff0c;我们步入一个全新的数字时代。在这个时代&#xff0c;虚拟现实&#xff08;VR&#xff09;技术崭露头角&#xff0c;逐步改变我们对世界的认知。全景展示厅作为VR技术与传统展览艺术的完美结合&#xff0c;以独特的全景视角&#xff0c;引领我们…

.NET外挂系列:4. harmony 中补丁参数的有趣玩法(上)

一&#xff1a;背景 1. 讲故事 前面几篇我们说完了 harmony 的几个注入点&#xff0c;这篇我们聚焦注入点可接收的几类参数的解读&#xff0c;非常有意思&#xff0c;在.NET高级调试 视角下也是非常重要的&#xff0c;到底是哪些参数&#xff0c;用一张表格整理如下&#xff…

Go语言中new与make的深度解析

在 Go 语言中&#xff0c;new 和 make 是两个用于内存分配的内置函数&#xff0c;但它们的作用和使用场景有显著区别。 理解它们的核心在于&#xff1a; new(T): 为类型 T 分配内存&#xff0c;并将其初始化为零值&#xff0c;然后返回一个指向该内存的指针 (*T)。make(T, ar…

3、ubantu系统 | 通过vscode远程安装并配置anaconda

1、vscode登录 登录后通过pwd可以发现目前位于wangqinag账号下&#xff0c;左侧为属于该账号的文件夹及文件。 通过cd ..可以回到上一级目录&#xff0c;通过ls可以查看当前目录下的文件夹及文件。 2、安装 2.1、下载anaconda 通过wget和curl下载未成功&#xff0c;使用手动…

【Unity】 HTFramework框架(六十五)ScrollList滚动数据列表

更新日期&#xff1a;2025年5月16日。 Github 仓库&#xff1a;https://github.com/SaiTingHu/HTFramework Gitee 仓库&#xff1a;https://gitee.com/SaiTingHu/HTFramework 索引 一、ScrollList滚动数据列表二、使用ScrollList1.快捷创建ScrollList2.ScrollList的属性3.自定义…

Swagger在java的运用

Swagger 是一个广泛使用的工具&#xff0c;用于设计、构建、记录和使用 RESTful Web 服务。它通过提供交互式的 API 文档、客户端 SDK 生成和 API 发现功能&#xff0c;极大地简化了 API 的开发和使用过程。以下是对 Swagger 的详细介绍&#xff0c;包括它的功能、使用场景、如…

代码随想录算法训练营 Day49 图论Ⅰ 深度优先与广度优先

图论 基础 图的概念 图的概念 概念清单有向图 (a)无向图 (b)有向/无向如图 a 所示每条边有指向如图 b 所示每条边没有箭头指向权值每条边的权值每条边的权值度-有几条边连到该节点 (eg V 2 V_2 V2​ 度为 3)入度/出度出度&#xff1a;从该节点出发的边个数入度&#xff1a;…

.NET外挂系列:1. harmony 基本原理和骨架分析

一&#xff1a;背景 1. 讲故事 为什么要开这么一个系列&#xff0c;是因为他可以对 .NET SDK 中的方法进行外挂&#xff0c;这种技术对解决程序的一些疑难杂症特别有用&#xff0c;在.NET高级调试 领域下大显神威&#xff0c;在我的训练营里也是花了一些篇幅来说这个&#xf…

HarmonyOS NEXT端云一体化工程目录结构

视频课程学习报名入口:HarmonyOS NEXT端云一体化开发 端云一体化开发工程由端开发工程(Application)和云开发工程(CloudProgram)两大核心模块构成。 1)端开发工程目录结构 端开发工程主要用于开发应用端侧的业务代码,通用云开发模板的端开发工程目录结构如下图所示: …

Ajax研究

简介 AJAX Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 AJAX 是一种在无需重新加载整个网页的情况下&#xff0c;能够更新部分网页的技术。 Ajax 不是一种新的编程语言&#xff0c;而是一种用于创建更好更快以及交互性更强的Web应用…

学习 Android(十)Fragment的生命周期

简介 Android 的 Fragment 是一个具有自己生命周期的 可重用 UI 组件&#xff0c;能够在运行时灵活地添加、移除和替换&#xff0c;从而支持单 Activity 多界面、动态布局和响应式设计。掌握 Fragment 的生命周期有助于正确地在各个阶段执行初始化、资源绑定、状态保存与释放操…

RT Thread FinSH(msh)调度逻辑

文章目录 概要FinSH功能FinSH调度逻辑细节小结 概要 RT-Thread&#xff08;Real-Time Thread&#xff09;作为一款开源的嵌入式实时操作系统&#xff0c;在嵌入式设备领域得到了广泛应用。 该系统不仅具备强大的任务调度功能&#xff0c;还集成了 FinSH命令行系统&#xff0c…