1.环境安装
我创建开发机选择镜像为Cuda12.2-conda,选择GPU为100%A100的资源配置
Conda 管理环境
conda create -n xtuner_101 python=3.10 -y
conda activate xtuner_101
pip install torch==2.4.0+cu121 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
pip install xtuner timm flash_attn datasets==2.21.0 deepspeed==0.16.1
conda install mpi4py -y
#为了兼容模型,降级transformers版本
pip uninstall transformers -y
pip install transformers==4.48.0 --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
检验环境安装
xtuner list-cfg
2.数据获取
数据为sftdata.jsonl,已上传。
3.训练
链接模型位置命令
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat ./
3.1 微调脚本
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (
CheckpointHook,
DistSamplerSeedHook,
IterTimerHook,
LoggerHook,
ParamSchedulerHook,
)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (
DatasetInfoHook,
EvaluateChatHook,
VarlenAttnArgsToMessageHubHook,
)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = "./internlm2_5-7b-chat"
use_varlen_attn = False
# Data
alpaca_en_path = "/root/xtuner/datasets/train/sftdata.jsonl"#换成自己的数据路径
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True
# parallel
sequence_parallel_size = 1
# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ["请给我介绍五个上海的景点", "Please tell me five scenic spots in Shanghai"]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side="right",
)
model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
),
lora=dict(
type=LoraConfig,
r=64,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
),
)
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=alpaca_en_path),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=alpaca_map_fn,
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn,
)
sampler = SequenceParallelSampler if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(type=sampler, shuffle=True),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn),
)
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale="dynamic",
dtype="float16",
)
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True,
),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True,
),
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template,
),
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit,
),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend="nccl"),
)
# set visualizer
visualizer = None
# set log level
log_level = "INFO"
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)
将模型和地址改为自己的路径
3.2 启动微调
cd /root/101
conda activate xtuner_101
xtuner train internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero1
3.3 合并
3.3.1 将PTH格式转换为HuggingFace格式
xtuner convert pth_to_hf internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ./work_dirs/internlm2_5_chat_7b_qlora_alpaca_e3_copy/iter_195.pth ./work_dirs/hf
3.3.2 合并adapter和基础模型
xtuner convert merge \
/root/internlm2_5-7b-chat \
./work_dirs/hf \
./work_dirs/merged \
--max-shard-size 2GB \
完成这两个步骤后,合并好的模型将保存在./work_dirs/merged
目录下,你可以直接使用这个模型进行推理了。
3.4 推理
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
# 加载模型和分词器
# model_path = "./lora_output/merged"
model_path = "./internlm2_5-7b-chat"
print(f"加载模型:{model_path}")
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, torch_dtype="auto", device_map="auto"
)
def classify_paper(title, authors, abstract, additional_info=""):
# 构建输入,包含多选选项
prompt = f"Based on the title '{title}', authors '{authors}', and abstract '{abstract}', please determine the scientific category of this paper. {additional_info}\n\nA. astro-ph\nB. cond-mat.mes-hall\nC. cond-mat.mtrl-sci\nD. cs.CL\nE. cs.CV\nF. cs.LG\nG. gr-qc\nH. hep-ph\nI. hep-th\nJ. quant-ph"
# 设置系统信息
messages = [
{"role": "system", "content": "你是个优秀的论文分类师"},
{"role": "user", "content": prompt},
]
# 应用聊天模板
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
# 生成回答
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=10, # 减少生成长度,只需要简短答案
temperature=0.1, # 降低温度提高确定性
top_p=0.95,
repetition_penalty=1.0,
)
# 解码输出
response = tokenizer.decode(
outputs[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
).strip()
# 如果回答中包含选项标识符,只返回该标识符
for option in ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]:
if option in response:
return option
# 如果回答不包含选项,返回完整回答
return response
# 示例使用
if __name__ == "__main__":
title = "Outilex, plate-forme logicielle de traitement de textes 'ecrits"
authors = "Olivier Blanc (IGM-LabInfo), Matthieu Constant (IGM-LabInfo), Eric Laporte (IGM-LabInfo)"
abstract = "The Outilex software platform, which will be made available to research, development and industry, comprises software components implementing all the fundamental operations of written text processing: processing without lexicons, exploitation of lexicons and grammars, language resource management. All data are structured in XML formats, and also in more compact formats, either readable or binary, whenever necessary; the required format converters are included in the platform; the grammar formats allow for combining statistical approaches with resource-based approaches. Manually constructed lexicons for French and English, originating from the LADL, and of substantial coverage, will be distributed with the platform under LGPL-LR license."
result = classify_paper(title, authors, abstract)
print(result)
# 计算并打印总耗时
end_time = time.time()
total_time = end_time - start_time
print(f"程序总耗时:{total_time:.2f}秒")
推理结果如下:
微调前模型推理
微调后模型推理
3.5 部署
pip install lmdeploy
python -m lmdeploy.pytorch.chat ./work_dirs/merged \
--max_new_tokens 256 \
--temperture 0.8 \
--top_p 0.95 \
--seed 0
4.评测(跳过)
5.上传模型到魔搭
pip install modelscope
使用脚本
from modelscope.hub.api import HubApi
YOUR_ACCESS_TOKEN='自己的令牌'
api=HubApi()
api.login(YOUR_ACCESS_TOKEN)
from modelscope.hub.constants import Licenses, ModelVisibility
owner_name='Raven10086'
model_name='InternLM-gmz-camp5'
model_id=f"{owner_name}/{model_name}"
api.create_model(
model_id,
visibility=ModelVisibility.PUBLIC,
license=Licenses.APACHE_V2,
chinese_name="gmz文本分类微调端侧小模型"
)
api.upload_folder(
repo_id=f"{owner_name}/{model_name}",
folder_path='/root/swift_output/InternLM3-8B-SFT-Lora/v5-20250517-164316/checkpoint-62-merged',
commit_message='fast commit',
)
上传成功截图