OpenCV进阶操作:图像直方图、直方图均衡化

news2025/5/10 23:07:37

文章目录

  • 一、图像直方图
  • 二、图像直方图的作用
  • 三、使用matplotlib方法绘制直方图
    • 2.使用opencv的方法绘制直方图(划分16个小的子亮度区间)
    • 3、绘制彩色图像的直方图
  • 四、直方图均衡化
    • 1、绘制原图的直方图
    • 2、绘制经过直方图均衡化后的图片的直方图
    • 3、自适应直方图均衡化
      • 1)概念
      • 2)步骤
      • 3)代码实现


一、图像直方图

图像直方图是描述图像像素值分布情况的统计图形。它表示了图像中不同像素值的数量或频率。
在这里插入图片描述

在图像直方图中,横轴表示像素值的范围,通常为0-255,纵轴表示像素值的数量或频率。直方图的每一个条柱代表某个像素值范围内像素的数量或频率。例如,柱子的高度表示图像中具有该像素值的像素的数量或出现的频率。
在这里插入图片描述
在这里插入图片描述

二、图像直方图的作用

  • 分析图像的亮度分布
    通过直方图可以了解图像中不同亮度值的像素数量,从而判断图像的亮度分布情况。例如,如果直方图中灰度级别集中在低亮度区域,说明图像较暗;如果直方图分布在高亮度区域,则说明图像较亮。

  • 判断图像的对比度
    直方图的宽度反映了图像的对比度。直方图宽度越大,表示图像中像素值分布越分散,对比度越高;相反,直方图宽度越窄,表示图像中像素值分布越集中,对比度越低。

  • 检测图像的亮度和色彩偏移
    通过比较不同颜色通道的直方图,可以判断图像是否存在亮度或色彩偏移。例如,如果红色通道的直方图偏向左侧,则说明图像偏向较暗的红色,存在亮度偏移。

  • 图像增强和调整
    通过分析直方图,可以根据图像的特点进行增强和调整。例如,可以通过直方图均衡化来增强图像的对比度;可以通过直方图匹配来调整图像的色彩和亮度分布。

  • 阈值分割
    直方图可以用于确定图像的阈值,用于分割图像中的目标物体和背景。通过直方图的谷底或者双峰可以确定一个适合的阈值值,将图像分成两个部分。

三、使用matplotlib方法绘制直方图

img =cv2.imread('../data/310.jpg',cv2.IMREAD_GRAYSCALE)
 
# 转成一维
a=img.ravel()
 
# 使用 matplotlib 的 hist 函数绘制直方图。
plt.hist(a,bins=256)
plt.show()
 
# 参数解释:
# - a:一维数组,即图像的像素值组成的数组。
# - bins=256:指定直方图的条数,即灰度级的数量。

在这里插入图片描述

2.使用opencv的方法绘制直方图(划分16个小的子亮度区间)

#这里的calcHist参数在上面有介绍,这里是对img图片做直方图统计,采用灰度图,即零通道,未设置掩膜,划分为16个区间,亮度值统计[0,256]的值
phone_hist = cv2.calcHist([img],[0],None,[16],[0,256])
plt.plot(phone_hist)#使用calcHist的值绘制曲线图
plt.show()

统计的值为每个亮度区间内属于该亮度值的像素点个数。
在这里插入图片描述

3、绘制彩色图像的直方图

img=cv2.imread('zl.jpg')
color=('b','g','r')    #设置绘制的折线图每条线的颜色
for i,col in enumerate(color):    #依次遍历三个颜色通道
    histr=cv2.calcHist([img],[i],None,[256],[0,256])    #依次计算每个通道的直方图值
    plt.plot(histr,color=col)    #绘制折线图
plt.show()

分别统计了不同颜色通道下的直方图
在这里插入图片描述

四、直方图均衡化

直方图均衡化:直方图均衡化是一种图像增强技术,它可以通过增加图像的对比度和亮度来改善图像的质量。直方图均衡化通过将图像的像素值分布均匀化来实现这一目标。
在这里插入图片描述

在Python OpenCV中,可以使用cv2.equalizeHist()函数来实现直方图均衡化。该函数将输入图像转换为灰度图像,并将其像素值分布均匀化,从而增强图像的对比度和亮度。下面是将不均衡的直方图均衡化之后的结果。

1、绘制原图的直方图

woman = cv2.imread('ja.jpg',cv2.IMREAD_GRAYSCALE)
# # # phone_hist = cv2.calcHist([phone],[0],None,[256],[0,256])
plt.hist(woman.ravel(), bins=256)#numpy中的ravel将数组多维度拉成一维数组
plt.show()

在这里插入图片描述

2、绘制经过直方图均衡化后的图片的直方图

phone_equalize = cv2.equalizeHist(woman)
plt.hist(phone_equalize.ravel(), bins=256)#numpy中的ravel将数组多维度拉成一维数组
plt.show()

在这里插入图片描述
在这里插入图片描述

3、自适应直方图均衡化

1)概念

传统的直方图均衡化方法是将整个图像的直方图变成均匀分布,但在某些情况下,图像的局部区域可能存在过亮或过暗的问题。自适应直方图均衡化通过将图像分成多个小的局部区域,并对每个局部区域进行直方图均衡化,从而避免了全局均衡化带来的问题。

2)步骤

  • 将图像分成多个不重叠的小块,每个小块称为一个局部区域。
  • 对每个局部区域进行直方图均衡化,得到均衡化后的局部区域。
  • 将均衡化后的局部区域重新拼合,得到最终的均衡化图像。

3)代码实现

(接上面代码)

clahe = cv2.createCLAHE(clipLimit=1,tileGridSize=(16,16))   # 通过类创建了一个均衡化对象
# clipLimit表示对比度的限制,tileGridSize表示图像均匀划分的小块大小
phone_clahe = clahe.apply(phone)  # 将均衡化对象应用到图片phone上得到均衡化处理后的图片phone_clahe
res = np.hstack((phone,phone_equalize,phone_clahe))  # 将原图、直方图均衡化后的图像、自适应直方图均衡化后的图像,水平方向合并
cv2.imshow("phone_equalize",res)
cv2.waitKey(0)

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2372692.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基环树(模板) 2876. 有向图访问计数

对于基环树,我们可以通过拓扑排序去掉所有的树枝,只剩下环,题目中可能会有多个基环树 思路:我们先利用拓扑排序将树枝去掉,然后求出每个基环树,之后反向dfs求得所有树枝的长度即可 class Solution { publi…

【物联网】基于树莓派的物联网开发【1】——初识树莓派

使用背景 物联网开发从0到1研究,以树莓派为基础 场景介绍 系统学习Linux、Python、WEB全栈、各种传感器和硬件 接下来程序猫将带领大家进军物联网世界,从0开始入门研究树莓派。 认识树莓派 正面图示: 1:树莓派简介 树莓派…

学习Python的第一天之网络爬虫

30岁程序员学习Python的第一天:网络爬虫 Requests库 1、requests库安装 windows系统通过管理员打开cmd,运行pip install requests!测试案例: 2、Requests库的两个重要对象 Response对象Resoponse对象包含服务器返回的所有信息&#xff…

linux下的Redis的编译安装与配置

配合做开发经常会用到redis,整理下编译安装配置过程,仅供参考! --------------------------------------Redis的安装与配置-------------------------------------- 下载 wget https://download.redis.io/releases/redis-6.2.6.tar.gz tar…

无人机相关技术与故障排除笔记

无人机相关技术与故障排除笔记 本文档整理了关于无人机电调、电机、通信协议、传感器以及硬件故障排除相关的笔记和解释。 1. 电调 (ESC) PWM 输出初始化设置 初始化电调(电子调速器)的 PWM 输出功能时,设置 频率 400Hz、分辨率 10000、初…

SpringSecurity(自定义异常处理)

文末有本篇文章的项目源码可供下载学习。 在实际的项目开发过程中,我们对于认证失败或者授权失败需要像接口一样返回相同结构的json数据,这样可以让前端对响应进行统一的处理。要实现这个功能我们需要知道SpringSecurity的异常处理机制。 在SpringSecu…

Java——反射

目录 5 反射 5 反射 类信息:方法、变量、构造器、继承和实现的类或接口。反射:反射是 Java 中一项强大的特性,它赋予了程序在运行时动态获取类的信息,并能够调用类的方法、访问类的字段以及操作构造函数等的能力。通过反射&#…

本地玩AI绘画 | StableDiffusion安装到绘画

环境须知 Cuda必须安装 不需要安装Python,因为该项目会自动安装Python3.10的虚拟环境 1.下载StableDiffusionWebUI压缩包并解压 下载方式一: 从Github下载https://github.com/AUTOMATIC1111/stable-diffusion-webui 的压缩包,解压后名为…

project从入门到精通(四)

目录 日程表的设置和妙用 为日程表视图添加任务 用日程表视图的好处 ​编辑 查找任务的前置任务和后续任务 方法1:采用复合视图的方式 方法3:关系图法 方法4:通过任务路径的方式检查所选任务的前置任务 前置任务和驱动前置任务的区…

git项目迁移,包括所有的提交记录和分支 gitlab迁移到gitblit

之前git都是全新项目上传,没有迁移过,因为迁移的话要考虑已有项目上的分支都要迁移过去,提交记录能迁移就好;分支如果按照全新项目上传的方式需要新git手动创建好老git已有分支,在手动一个一个克隆老项目分支代码依次提…

港大今年开源了哪些SLAM算法?

过去的5个月,香港大学 MaRS 实验室陆续开源了四套面向无人机的在线 SLAM 框架:**FAST-LIVO2 、Point-LIO(grid-map 分支) 、Voxel-SLAM 、Swarm-LIO2 **。这四套框架覆盖了单机三传感器融合、高带宽高速机动、长时间多级地图优化以…

Godot4.3类星露谷游戏开发之【昼夜循环】

千里之行,始于足下 文章目录 零、 笔记一、创造时间二、产生颜色三、搭建测试环境四、测试五、免费开源资产包 零、 笔记 为了让游戏可以拥有白天和黑夜,我们需要像上帝一样,在游戏中创造时间的规则,并在不同的时间点产生不同的颜…

修复笔记:获取 torch._dynamo 的详细日志信息

一、问题描述 在运行项目时,遇到与 torch._dynamo 相关的报错,并且希望获取更详细的日志信息以便于进一步诊断问题。 二、相关环境变量设置 通过设置环境变量,可以获得更详细的日志信息: set TORCH_LOGSdynamo set TORCHDYNAM…

Windows平台下的Qt发布版程序打包成exe可执行文件(带图标)|Qt|C++

首先先找一个可执行文件的图标 可以去阿里的矢量图库里找 iconfont-阿里巴巴矢量图标库 找到想要的图标下载下来 此时的图标是png格式的,我们要转到icon格式的文件 要使用到一个工具Drop Icons_2.1.1.rar - 蓝奏云 生成icon文件后把icon文件放到你项目的根目录下…

CSS--图片链接垂直居中展示的方法

原文网址&#xff1a;CSS--图片链接垂直居中展示的方法-CSDN博客 简介 本文介绍CSS图片链接垂直居中展示的方法。 图片链接 问题复现 源码 <html xml:lang"cn" lang"cn"><head><meta http-equiv"Content-Type" content&quo…

TRAE 配置blender MCP AI自动3D建模

BlenderMCP - Blender模型上下文协议集成 BlenderMCP通过模型上下文协议(MCP)将Blender连接到Claude AI&#xff0c;允许Claude直接与Blender交互并控制Blender。这种集成实现了即时辅助的3D建模、场景创建和操纵。 1.第一步下载 MCP插件(addon.py):Blender插件&#xff0c;在…

VUE2课程计划表练习

主要练习数据变量对象 以下是修正后的完整代码&#xff1a; //javascript export default {data() {return {list: [{ id: 1, subject: Vue.js 前端实战开发, content: 学习指令&#xff0c;例如 v-if、v-for、v-model 等, place: 自习室, status: false }// 可以在这里添加更…

2025年软件工程与数据挖掘国际会议(SEDM 2025)

2025 International Conference on Software Engineering and Data Mining 一、大会信息 会议简称&#xff1a;SEDM 2025 大会地点&#xff1a;中国太原 收录检索&#xff1a;提交Ei Compendex,CPCI,CNKI,Google Scholar等 二、会议简介 2025年软件开发与数据挖掘国际会议于…

.NET高频技术点(持续更新中)

1. .NET 框架概述 .NET 框架的发展历程.NET Core 与 .NET Framework 的区别.NET 5 及后续版本的统一平台 2. C# 语言特性 异步编程&#xff08;async/await&#xff09;LINQ&#xff08;Language Integrated Query&#xff09;泛型与集合委托与事件属性与索引器 3. ASP.NET…

pandas中的数据聚合函数:`pivot_table` 和 `groupby`有啥不同?

pivot_table 和 groupby 是 pandas 中两种常用的数据聚合方法&#xff0c;它们都能实现数据分组和汇总&#xff0c;但在使用方式和输出结构上有显著区别。 0. 基本介绍 groupby分组聚合 groupby 是 Pandas 库中的一个功能强大的方法&#xff0c;用于根据一个或多个列对数据进…