一、直通式HAL
这里使用一个案例来介绍直通式HAL,选择MTK的NFC HIDL 1.0为例,因为比较简单,代码量也比较小,其源码路径:vendor/hardware/interfaces/nfc/1.0/
1、NFC HAL的定义
1)NFC HAL数据类型
通常定义在types.hal里面,其语法和java/c/c++可能不一致,详细参考https://source.android.com/docs/core/architecture/hidl/types?hl=zh-cn
2)NFC HAL回调接口
HAL的回调接口,即通常被定义为IXXXCallback
INfcClientCallback从命名可以知道给客户端的回调接口,即给客户端进程或者framework层提供的回调接口,即hal可以通过该接口向对方回调数据
3)NFC HAL接口定义
HAL的正式接口,同前面的回调接口刚好相反,即
HAL接口:客户端/Framework -------> HAL进程(HAL进程是被调用者)
CALL接口:HAL进程 ------>客户端/Framework (HAL进程主动发起)
2、NFC HAL的逻辑
NFC HAL 1.0的版本是一个典型的直通式,其源码就nfc.cpp,逻辑相对比较简单
//vendor/hardware/interfaces/nfc/1.0/default/Nfc.h
#ifndef ANDROID_HARDWARE_NFC_V1_0_NFC_H
#define ANDROID_HARDWARE_NFC_V1_0_NFC_H
#include <android/hardware/nfc/1.0/INfc.h>
#include <hidl/Status.h>
#include <hardware/hardware.h>
#include <hardware/nfc.h>
namespace android {
namespace hardware {
namespace nfc {
namespace V1_0 {
namespace implementation {
using ::android::hardware::nfc::V1_0::INfc;
using ::android::hardware::nfc::V1_0::INfcClientCallback;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_vec;
using ::android::hardware::hidl_string;
using ::android::sp;
struct Nfc : public INfc, public hidl_death_recipient {
Nfc(nfc_nci_device_t* device);
::android::hardware::Return<NfcStatus> open(
const sp<INfcClientCallback>& clientCallback) override;
::android::hardware::Return<uint32_t> write(const hidl_vec<uint8_t>& data) override;
::android::hardware::Return<NfcStatus> coreInitialized(const hidl_vec<uint8_t>& data) override;
::android::hardware::Return<NfcStatus> prediscover() override;
::android::hardware::Return<NfcStatus> close() override;
::android::hardware::Return<NfcStatus> controlGranted() override;
::android::hardware::Return<NfcStatus> powerCycle() override;
static void eventCallback(uint8_t event, uint8_t status) {
if (mCallback != nullptr) {
auto ret = mCallback->sendEvent((::android::hardware::nfc::V1_0::NfcEvent)event,
(::android::hardware::nfc::V1_0::NfcStatus)status);
if (!ret.isOk()) {
ALOGW("Failed to call back into NFC process.");
}
}
}
static void dataCallback(uint16_t data_len, uint8_t* p_data) {
hidl_vec<uint8_t> data;
data.setToExternal(p_data, data_len);
if (mCallback != nullptr) {
auto ret = mCallback->sendData(data);
if (!ret.isOk()) {
ALOGW("Failed to call back into NFC process.");
}
}
}
virtual void serviceDied(uint64_t /*cookie*/,
const wp<::android::hidl::base::V1_0::IBase>& /*who*/) {
close();
}
private:
static sp<INfcClientCallback> mCallback;
const nfc_nci_device_t* mDevice;
};
extern "C" INfc* HIDL_FETCH_INfc(const char* name);
} // namespace implementation
} // namespace V1_0
} // namespace nfc
} // namespace hardware
} // namespace android
#endif // ANDROID_HARDWARE_NFC_V1_0_NFC_H
//vendor/hardware/interfaces/nfc/1.0/default/Nfc.cpp
#define LOG_TAG "android.hardware.nfc@1.0-impl"
#include <log/log.h>
#include <hardware/hardware.h>
#include <hardware/nfc.h>
#include "Nfc.h"
namespace android {
namespace hardware {
namespace nfc {
namespace V1_0 {
namespace implementation {
sp<INfcClientCallback> Nfc::mCallback = nullptr;
Nfc::Nfc(nfc_nci_device_t* device) : mDevice(device) {}
// Methods from ::android::hardware::nfc::V1_0::INfc follow.
::android::hardware::Return<NfcStatus> Nfc::open(const sp<INfcClientCallback>& clientCallback) {
mCallback = clientCallback;
if (mDevice == nullptr || mCallback == nullptr) {
return NfcStatus::FAILED;
}
mCallback->linkToDeath(this, 0 /*cookie*/);
int ret = mDevice->open(mDevice, eventCallback, dataCallback);
return ret == 0 ? NfcStatus::OK : NfcStatus::FAILED;
}
::android::hardware::Return<uint32_t> Nfc::write(const hidl_vec<uint8_t>& data) {
if (mDevice == nullptr) {
return -1;
}
return mDevice->write(mDevice, data.size(), &data[0]);
}
::android::hardware::Return<NfcStatus> Nfc::coreInitialized(const hidl_vec<uint8_t>& data) {
hidl_vec<uint8_t> copy = data;
if (mDevice == nullptr || copy.size() == 0) {
return NfcStatus::FAILED;
}
int ret = mDevice->core_initialized(mDevice, ©[0]);
return ret == 0 ? NfcStatus::OK : NfcStatus::FAILED;
}
::android::hardware::Return<NfcStatus> Nfc::prediscover() {
if (mDevice == nullptr) {
return NfcStatus::FAILED;
}
return mDevice->pre_discover(mDevice) ? NfcStatus::FAILED : NfcStatus::OK;
}
::android::hardware::Return<NfcStatus> Nfc::close() {
if (mDevice == nullptr || mCallback == nullptr) {
return NfcStatus::FAILED;
}
mCallback->unlinkToDeath(this);
return mDevice->close(mDevice) ? NfcStatus::FAILED : NfcStatus::OK;
}
::android::hardware::Return<NfcStatus> Nfc::controlGranted() {
if (mDevice == nullptr) {
return NfcStatus::FAILED;
}
return mDevice->control_granted(mDevice) ? NfcStatus::FAILED : NfcStatus::OK;
}
::android::hardware::Return<NfcStatus> Nfc::powerCycle() {
if (mDevice == nullptr) {
return NfcStatus::FAILED;
}
return mDevice->power_cycle(mDevice) ? NfcStatus::FAILED : NfcStatus::OK;
}
INfc* HIDL_FETCH_INfc(const char * /*name*/) {
nfc_nci_device_t* nfc_device;
int ret = 0;
const hw_module_t* hw_module = nullptr;
ret = hw_get_module (NFC_NCI_HARDWARE_MODULE_ID, &hw_module);
if (ret == 0) {
ret = nfc_nci_open (hw_module, &nfc_device);
if (ret != 0) {
ALOGE ("nfc_nci_open failed: %d", ret);
}
}
else
ALOGE ("hw_get_module %s failed: %d", NFC_NCI_HARDWARE_MODULE_ID, ret);
if (ret == 0) {
return new Nfc(nfc_device);
} else {
ALOGE("Passthrough failed to load legacy HAL.");
return nullptr;
}
}
} // namespace implementation
} // namespace V1_0
} // namespace nfc
} // namespace hardware
} // namespace android
1)如何集成了驱动?
首先在nfc.h定义了很关键的成员变量mDevice,熟悉C/C++代码的从命名来看应该是一个驱动关联的句柄:
const nfc_nci_device_t* mDevice;
在nfc.cpp代码中可以很明显的看到通过linux和hal的机制去打开nfc驱动设备节点:
因此有理由相信这里的mDevice其实就是nfc驱动设备节点的一个句柄,所以解析来的代码逻辑其实就是对nfc驱动设备节点的文件操作了。
2)客户端如何通过hal调用驱动?
对驱动设备节点的第一个操作就是open,在open之后我们就可以对设备节点进行write或者其他操作,如下几个函数,都是NFC HAL接口的定义,因此HAL进程这里都是作为被动调用的一方,最后通过mDevice->XXX的方式调用驱动代码,驱动代码实现具体功能。
3)驱动阶段如何主动返回数据?
那么如果驱动程序想主动返回数据给到客户端,或者给到系统framework层,那么如何操作呢?
这时需要在看看open函数:
我们来看看函数指针eventCallback和dataCallback如何实现?