当我们与客户合作帮助他们提高数据管理能力时,大多数部门都同意更好的数据治理将有助于解决他们的数据问题。然而,我们发现数据治理很少是优先事项,而且往往被搁置一旁,去支持更紧迫的业务工作。这有点像使用牙线——当你在牙医诊所时很容易获得动力,但当你回到家时很难保持。
本文主要是帮助将新的数据治理计划从理论转变为实践,从而提供有意义的价值或为那些已经开始其旅程的人提供一些参考。
1. 制定数据治理策略
■常见陷阱
数据治理通常始于模糊且难以采取行动的高级策略。通常,这源于数据治理在其他被认为更重要的数据功能中扮演次要角色,例如新数据平台建设或部署新的人工智能。由此产生的数据治理策略可能采取以下形式:
(1)成立数据治理委员会
(2)编写数据策略
(3)根据(1)和(2)的结果定义未来的活动
虽然数据治理委员会和数据政策都是数据治理的关键部分,但从这里开始可能是一种误导性的方法来产生影响,甚至导致数据治理脱轨。通常,数据治理委员会的成员是高级决策者。这些人不是负责制定可以执行的详细数据治理策略的人,因此虽然这些早期会议可能会引发一些关注,但很容易导致缺乏行动。同样,虽然从一开始就编写数据策略在理论上听起来不错,可能会产生大量编写良好的文档,而这些文档很难定义接下来要实施的步骤。因此,这可能导致动力严重丧失,数据治理对