浅谈选择示波器时的“5倍法则”

news2025/8/14 18:54:21

众所周知,选择示波器时经常会用到5倍法则,其实不仅仅是针对带宽,当涉及到快沿信号上升时间测试时,根据上升时间选择示波器也会用到5倍法则。本文将分别对这两种情况下的5倍法则展开讨论,并介绍当考虑示波器和探头构成的整个测试系统时又该如何选择。

1. 示波器带宽选择时的5倍法则

所谓5倍法则,就是为了保证信号的幅度测试精度,示波器的带宽至少要选择为信号频率的5倍!这通常针对于正弦波信号,因为其频谱只有一根谱线。而对于脉冲信号,由于理论上具有无数个谐波,通常将示波器带宽选择为所关注的最高次谐波频率的5倍。

为什么按照5倍法则选择示波器的带宽呢?如果不按照这个法则,对于信号幅度测试精度有多大影响呢?选择示波器带宽时,5倍法则主要适用于哪一类示波器?

为了解释这些问题,首先需要了解一下示波器的模拟带宽。示波器的模拟通道具有低通滤波器的频率响应,带宽就是指该低通滤波器的3dB截止频率。如果测试一个频率与示波器标定带宽相同的正弦波信号,电压幅度测试结果将下降为真实电压值的0.707倍,如果用对数表示,则测量幅度将降低3dB。

可将示波器的模拟通道等效为一个RC低通滤波器,为了简便起见,此处只考虑一阶RC低通滤波器,其等效电路及幅频响应如图1所示。一阶RC低通滤波器的幅频响应表达式可写为:

​图1. 一阶RC低通滤波器电路模型及其幅频响应

使得传输系数下降至0.707时的频率称为低通滤波器的截止频率,或者称为3dB带宽,据此可得

​经计算得

​代入幅频响应函数后得

由图1中的幅频响应可知,随着频率的不断提高,信号经过滤波器时的衰减越大,这也意味着测得的信号幅度误差越大。如何保证信号的幅度测试精度呢?

很明显,当示波器的带宽远远大于信号的频率时,才可以得到非常高的幅度测试精度。但是,示波器带宽越大,成本越高,实际选择时必须折中考虑成本和测试精度。业界通常采用5倍法则选择示波器的带宽,此时可以保证至少98%的幅度测试精度。

假设待测正弦波信号的幅度为1V,角频率为ω0,当测试精度不低于98%时,则满足如下关系式

​进一步化简可得

这表明,当测试正弦波信号时,只有在示波器的带宽不低于正弦波信号频率的4.93倍时,才能保证至少98%的测试精度。为了方便,通常建议示波器带宽至少为信号频率的5倍,这就是5倍法则的由来。

表1. 测试不同频率的正弦波时对应的幅度精度

至于是否按照5倍法则选择示波器的带宽对测试精度有多大影响,在示波器带宽固定的情况下,表1给出了不同频率的正弦波信号对应的理论测试精度。显然,示波器带宽相对于信号频率越大,幅度测试精度越高!

选择示波器时必须要遵循5倍法则吗?可以肯定的是,带宽大是有好处的,尤其是针对于经济型的示波器而言(BW≤1GHz)。因为通常并不会对这类示波器的频率响应做相应补偿,其幅频响应平坦度并不好。而且,这类示波器模拟通道基本就是1阶RC低通滤波器的频响,如果要求98%的测试精度,就要按照5倍法则选择示波器带宽。

而对于中高端示波器,示波器内部通常都引入了模拟通道的补偿算法,可以得到比较平坦的幅频响应,因此,对于这类示波器可以不按照5倍法则进行选择。值得一提的是,对模拟通道的补偿并不会扰乱测试,相反,可以大大改善测试效果,提高信号保真度,尤其是针对于宽带信号以及高速数字信号的测试,这种补偿是至关重要的。

2. 示波器结合探头使用时,测试系统的带宽如何确定?

前面介绍了选择带宽时5倍法则的由来,接下来介绍当示波器结合探头使用时,整个测试系统的带宽由谁决定,并为下一步推导上升时间的级联公式做准备。

与示波器的模拟通道类似,探头也呈现为低通滤波器的频率响应。很明显,当示波器带宽远远大于探头带宽时,系统的带宽取决于探头;当探头的带宽远远大于示波器的带宽时,系统的带宽取决于示波器。

通常认为,测试系统的带宽和示波器及探头的带宽满足如下关系:

其实,当示波器带宽和探头带宽相当时,采用这个公式计算得到的系统带宽的误差是比较大的。示波器和探头构成的测试系统的幅频响应表达式为

类似地,当系统的传输系数下降至0.707时的频率即为系统的3dB带宽,这意味着

​化简可得

如果将上式中的高次项忽略,则便可以得到上面的结论。

那么能否将高次项忽略呢?当示波器带宽和探头带宽差异较大时,高次项相对较小,是可以忽略的。二者带宽越接近,则忽略高次项带来的误差越大,当二者带宽相同时,使用上式计算的系统带宽的误差最大,可以达到25%的误差。但可以肯定的是,总体的系统带宽是小于示波器和探头带宽的!

尽管如此,对于中高端示波器和有源探头而言,由于可以对探头和模拟通道的频响做补偿,因此即使二者带宽相同,也可以满带宽使用。比如,示波器带宽为16GHz,探头带宽也为16GHz,则系统带宽也可以达到16GHz。而经济型示波器却没有这种补偿频响的功能,系统带宽会变窄,使用时要特别注意。

3. 按照上升时间选择示波器时的5倍法则

本节将首先介绍带宽与上升时间的关系,并给出理论推导;然后着眼于示波器和探头构成的整个测试系统,描述了系统的上升时间与示波器和探头的上升时间有着怎样的关系;最后道出结论,为了提高测试精度,建议采用5倍法则进行选择。

对于任意一个LTI (线性时不变)系统,当施加一单位阶跃信号时对应的零状态响应称为单位阶跃响应(简称为阶跃响应),该过程可以理解为其瞬态响应过程,响应的快慢取决于系统带宽,一般使用上升时间衡量。系统带宽越大,则瞬态响应速度越快,上升时间也越短。对于示波器和探头,亦是如此。

示波器和探头的上升时间与带宽之间具有怎样的量化关系?

示波器的模拟通道和探头均呈现为低通滤波器的特性,为了便于推导,此处假设二者均具有一阶RC低通滤波器的频响。

如果要确定上升时间,则需要从阶跃响应入手,一阶RC低通滤波器的阶跃响应为

​式中,

为滤波器的时间常数,且

如果按照10%~90%的规则定义上升时间,则可以按照如下方法进行计算。

在t=0时刻,信号电压为0.

假设t1时刻,信号电压上升至0.1 V,则满足:

假设t2时刻,信号电压上升至0.9 V,则满足:

经计算可得上升时间为:

进一步化简得

对于低通滤波器而言,3dB截止频率即为3dB带宽,因此可以得到关于带宽与上升时间关系的经典公式:

该公式是基于一阶RC低通滤波器频响推导的,对于BW ≤ 1GHz的示波器和探头而言,基本都适用。如果是更高带宽的中高端示波器和探头,其通道依然相当于低通滤波器,但通常并不是一阶低通滤波器的频响,所以上述公式中的系数不再是0.35,而是位于0.4~0.45之间。

对于示波器和探头构成的测试系统,总体的上升时间如何推算呢?

前面已经介绍了测试系统带宽与示波器和探头带宽之间的关系,结合带宽与上升时间的关系,则整个测试系统与示波器和探头的上升时间满足:

也就是说,整个测试系统的上升时间恶化了。

对于待测的快沿信号而言,定义其等效3dB带宽为BWsignal,与上升时间也可以近似等效于上面的关系式。如果使用示波器和探头测试该快沿信号,则信号等效3dB带宽的测量值与测试系统的带宽近似满足如下关系:

再根据带宽与上升时间的关系,将上式进一步化简得

由此可见,实际测量的快沿信号的上升时间与系统的上升时间有很大关系。

通常推荐测试系统的上升时间不大于待测信号上升时间的1/5,以提高测试精度,这就是在快沿测试过程中的5倍法则!

表2. 不同的系统上升时间对应的测试误差

表2给出了测试某一快沿信号时,不同的系统上升时间对应的测试误差。系统上升时间相对于信号上升时间越小,则测试误差越小,测试精度越高。当系统上升时间为信号上升时间的1/5时,测试精度可以达到98%。这也是在该测试场景下使用5倍法则的原因!

为了进一步验证,分别将示波器的带宽限定为1GHz、500MHz和200MHz,测试同一快沿脉冲信号的波形如图2所示。当带宽不足时,测试系统上升时间增大,严重恶化了测试精度。

图2. 带宽分别限定为1GHz、500MHz和200MHz时测试同一快沿信号的结果

小结

本文描述并解释了在选择示波器时常用的5倍法则,该法则不仅适用于示波器带宽的选择,也适用于测试快沿信号时系统自身上升时间的选择。对于级联系统的等效带宽和上升时间,文中亦有描述。为了提高幅度和上升时间测试精度,强烈推荐采用5倍法则选择示波器。

END

来源:浅谈选择示波器时的“5倍法则” - RFASK射频问问

关于RFASK射频问问

射频问问是在"微波射频网”系列原创技术专栏基础上升级打造的技术问答学习平台,主要围绕射频芯片、微波电路、天线、雷达、卫星等相关技术领域,致力于为无线通信、微波射频、天线、雷达等行业的工程师,提供优质、原创的技术问答、专栏文章、射频课程等学习内容。更多请访问:RFASK射频问问 - 射频技术研发服务平台 | 技术问答、专栏文章、射频课程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/14912.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从结构上浅谈FPGA实现逻辑的原理

FPGA是啥?你要是在百度上一查,多数会搜到什么 Field Programmable Gate Array,现场可编程门整列嘛,但是这句话对咱们新手理解FPGA起到的作用十分有限,其实不单是新手朋友,就连我这个玩了几个月的FPGAer也不…

(三)Logistic回归的梯度下降

一、单个样本的Logistic回归的梯度下降法 在本节中,我们学习如何计算偏导数来实现Logistic回归的梯度下降法。 我们将使用导数流程图来计算梯度。 首先回顾一下Logistic回归的公式 zwTxbz w^TxbzwTxb y^aσ(z)11e−z\widehat{y}a \sigma(z) \frac 1 {1e^{-z}}y​…

会员中心通过AJAX、JSON、PHP、MySql等技术实现注册和登录功能(1+X Web前端开发中级 例题)——初稿

📄题目要求 阅读下列说明、效果图和代码,进行动态网页开发,补充代码(1)-(30)。会员中心,需要先注册后登录,先要求应用HTML、CSS、AJAX、JSON、PHP、MySql等技术实现注册…

反射机制(复习)

反射机制 反射机制定义反射机制的功能反射机制主要的API反射机制演示对 Class 的理解Class实例获取的四种方式Class 对应内存结构说明加载Properties文件的俩种方式调用运行时类的结构调用运行时类的指定属性调用运行时类指定的方法调用运行时类指定的构造器反射的应用&#xf…

技术公开课|深度剖析 Java 的依赖管理,快速生成项目 SBOM清单

背景 近年来软件供应链安全风险涌现,无论是 Fastjson、Log4j 等基础组件的 0day,来源于开源的风险事件不断上升,对于研发以及安全同学来说,都是在不断的摸索建立有效的预防及解决机制,公开课将以风险治理为最终目标、…

Java -- 每日一问:谈谈MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?

典型回答 所谓隔离级别(Isolation Level),就是在数据库事务中,为保证并发数据读写的正确性而提出的定义,它并不是 MySQL 专有的概念,而是源于ANSI/ISO制定的SQL-92标准。 每种关系型数据库都提供了各自特…

(STM32)从零开始的RT-Thread之旅--PWM驱动ST7735调光

上一章: (STM32)从零开始的RT-Thread之旅--SPI驱动ST7735(1) 上一章我们先用SPI读取到了LCD的ID,这一章则是使用PWM调光点亮屏幕,因为测试这块屏幕时,发现直接设置背光引脚为高好像无法点亮,好像必须使用PWM调光&…

信而泰自动化OSPFv2测试小技巧

OSPFv2协议简介 OSPFv2(开放式最短路径优先版本2)是互联网协议(IP)网络的路由协议。它使用链路状态路由(LSR)算法,并且属于在单个自治系统(AS)内运行的内部网关协议&…

Inter RealSense深度相机ROS驱动

文章目录知识目标1. 深度相机的分类及工作原理2. Inter RealSense D415相机知识目标 学习深度相机的分类和工作原理; 学习Intel RealSense D415相机硬件构成和工作原理。 1. 深度相机的分类及工作原理 深度相机(可以测量物体到相机的距离)…

Java三大特性篇之——多态篇(千字详解)

JAVA面向对象编程有三大特性:封装、继承、多态,在我们学习了继承后,我们将继续学习多态。 文章目录前言:什么是多态?一、多态实现二、再谈重写三、向上转移四、多态优缺点五、多态案例最后前言:什么是多态?…

MR场景直播-帮助企业高效开展更有意思的员工培训

阿酷TONY / 2022-11-18 / 长沙 MR场景直播、MR培训场景和内容呈现以及直播互动功能,帮助企业高效开展员工培训,让整个培训过程更高效~~~ MR场景直播有哪些有意思的地方呢?先来一个图: ▲ 模拟真实光照还原现实景 丰富培训场景&a…

SQL实用功能手册

SQL实用功能手册 SQL基础复习 SQL结构化查询语言,是一种访问和处理数据库的计算机语言 对数据库操作对表操作对数据进行CRUD操作操作视图、存储过程、索引 环境基础操作 安装mysql、启动mysql、配置环境变量检查mysql版本:mysql --version链接mysql…

开源共建 | Dinky 扩展批流统一数据集成框架 ChunJun 的实践分享

一、前言 ChunJun(原FlinkX)是一个基于 Flink 提供易用、稳定、高效的批流统一的数据集成工具,既可以采集静态的数据,比如 MySQL,HDFS 等,也可以采集实时变化的数据,比如 binlog,Ka…

(九)DateTime——PHP

文章目录第九章 Date & Time1 time()获取时间戳2 getDate()转换时间戳3 date()转换时间戳第九章 Date & Time 1 time()获取时间戳 time()函数返回的整数表示自1970年1月1日格林尼治标准时间午夜起经过的秒数。这一时刻称为UNIX历元,自那时起经过的秒钟数称…

Metabase学习教程:提问-1

创建交互式图表 可以通过使用查询生成器、构建模型或添加自定义目标来创建图表。供用户在Metabase中钻取数据。类似: 图1。放大特定类别和时间范围,然后查看构成图表上某个条形图的订单。 如果您只使用SQL编写过问题,那么您可能会忽略这样一…

颠覆IoT行业的开发神器!涂鸦智能重磅推出TuyaOS操作系统【程序员必备】

1 前言 作为降低 IoT 技术门槛的开发神器,TuyaOS 操作系统重磅发布 3.6.0 新版本啦!针对设备安全、功耗、通信速率等关键功能,做了重大创新和优化升级。为了助力开发者更快速便捷地接入涂鸦IoT PaaS,并低门槛开发出有创意的智能单…

RabbitMQ初步到精通-第三章-RabbitMQ面板及环境搭建

第三章-RabbitMQ面板及环境搭建 1、RabbitMQ面板介绍 Rabbitmq安装完毕后,若是本地环境,打入:http://localhost:15672/#/ 进入到MQ的控制台页面中: 可以观察到此页面涉及的各个TAB,和我们前面介绍到的rabbitMQ架构中…

Docker入门学习笔记(狂神版)

下述笔记是自己花一天时间看B站狂神说Docker视频的笔记,下列的笔记是根据自己的实践的记录下来的,若想细学掌握Docker建议自行观看(《Docker入门到精通》),去观看狂胜的视频记得三连支持一下。他的Docker讲解个人觉得是…

每日一个设计模式之【代理模式】

文章目录每日一个设计模式之【代理模式】☁️前言🎉🎉🎉🌻模式概述🌱代理模式的实现🍀静态代理🍀动态代理🐳JDK代理🐳CGLib代理🍀拓展🐳虚拟代理&…

UE 5.1正式发布,有哪些值得一试的新功能?

UE 5.1正式发布,所以今天咱们就来看看最新版都具体更新和改进了哪些功能吧—— Nanite和Lumen Nanite和Lumen是UE 5.0版本更新的两个主要内容,UE 5.1则是对其进行进一步的改进。 Nanite添加了对双面材质和新的可编程光栅化程序的支持,可以通…