TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

news2025/7/23 13:35:18

原始笔记链接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486779&idx=1&sn=c75171844595150abc48d2dd59e7255f&chksm=cf51bfc2f82636d4e3f9c8526d0f25df1bea5496d9945d1e963961fea8c8fd630e7670b99afb#rd
↑ \uparrow 打开上述链接即可阅读全文

TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

毫米波雷达论文阅读: TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

图 0

论文链接:https://ieeexplore.ieee.org/document/10097751

0 Abstract

  • 研究内容

    • present a nonlinear system model to evaluate the impact of circuit nonlinearities on spurs in millimeter-wave FMCW radar system-on-chips

    • The developed model includes:

      ✅ Harmonics of the frequency multiplier (频率乘法器的谐波)

      ✅ Nonlinearity of the power amplifier (PA) and low-noise amplifier (LNA) (功率放大器和低噪声放大器的非线性度)

      ✅ Switching operation of the receiver (RX) mixer (接收机混频器的切换操作)

      ✅ Limited bandwidth of the PA, LNA, transmitter (TX) and RX antennas (PA, LNA, 发射接收天线的有效带宽)

      ✅ TX-to-RX leakage (发射接收泄漏)

  • 意义

    • The nonlinear model can be used to derive frequency and amplitude of spurs in the radar IF spectrum
    • without time-consuming simulations
  • Insights : The major insights about the impact of different nonlinearities and their interactions

    • Harmonics of the frequency multiplier appear as spurs in the IF spectrum
    • PA can be driven in its nonlinear region to mitigate the harmonics generated by the frequency multiplier
    • Bandwidth of the TX and RX systems should be limited to attenuate the undesired harmonics(衰减不希望出现的谐波)
    • Interaction between the TX-to-RX leakage signal and the LNA nonlinearity can lead to spurs close to the target echo in the IF spectrum

1 Introduction

  • 背景: Millimeter-wave high-resolution radars的重要性

    • Automotive sensors (ADAS, autonomous driving)
    • Medical imaging, vital signs monitoring, gesture recognition
    • IoT sensors, smart buildings, industrial transport, robotics
  • 背景: mm-wave radar SoC 的最新进展

    • Implemented in CMOS, SOI, SiGe processes
    • Operating at 60 GHz, 77 GHz, 76-81 GHz, 140 GHz, 200-300 GHz
    • Achieving high range resolution by using higher mm-wave bands and wide bandwidth
    • Achieving high angular resolution using MIMO architecture
  • 问题:广泛使用的FMCW雷达系统存在Spurs

    • Signal generation can be challenging due to requirements on:

      ✅ Bandwidth

      ✅ Phase noise

      ✅ Jitter

      ✅ Spurs

    • 前三种已经有解决方案:Nonlinear effects such as chirp nonlinearity can be mitigated using error correction or calibration techniques

    • Spurs: Spurs are undesired signals in the radar IF spectrum that can be generated by

      ❗ Harmonics of the frequency multiplier (因为low harmonic rejection ration(HRR) of the frequency multiplier)

      ❗ Nonlinearities of the power amplifier (PA) and low-noise amplifier (LNA) (通过 affect the harmonics level)

      ❗ TX-to-RX leakage (通过 affect the harmonics level)

    • 结论:一个全面的非线性模型对于推导 对 FMCW雷达电路组件的有效电路和系统设计 的要求 至关重要

  • This paper : presents a nonlinear system model for mm-wave FMCW radars

    • includes several important effects

      harmonics of the frequency multiplier

      nonlinearity of the PA, LNA

      the switching operation of the RX mixer

      the limited bandwidth of the TX and RX

      the stop-band rejections of the TX, RX, and IF filter

      the TX-to-RX leakage

    • To evaluate circuit nonlinearities and their interactions

    • 作用:

      ✅ The developed model can be used to estimate the frequency and amplitude of spurs in the radar IF spectrum

      without the need for time-consuming system and circuit simulations

2 Non-Linear System Model of FMCW Radar

2.1 Principles of FMCW Radar

图 1

  • Architecture of a mm-wave FMCW radar system:

    • Reference chirp signal is generated at lower frequency (e.g. 10 GHz)

    • Then Frequency multiplier transforms it to mm-wave band

      好处 :useful to achieve lower phase noise in the reference signal

    • Multiplier output signal is amplified by PA (功率放大器) and transmitted

    • Echo signal is received, amplified by LNA (低噪声放大器) and mixed with replica of multiplier output

    • Mixer output signal passes through IF bandpass filter (BPF)

  • Reference chirp signal

    • Linear time-dependent frequency:

      f r e f ( t ) = f 0 + S t 0 ≤ t ≤ T c f_{\mathrm{ref}}(t)=f_0+S t \quad 0 \leq t \leq T_c fref(t)=f0+St0tTc

      T c T_c Tc: chirp period

    • Instantaneous phase:

      Φ r e f ( t ) = 2 π ∫ f r e f ( t ) d t = Φ 0 + 2 π f 0 t + π S t 2 \Phi_{\mathrm{ref}}(t)=2 \pi \int f_{\mathrm{ref}}(t) d t=\Phi_0+2 \pi f_0 t+\pi S t^2 Φref(t)=2πfref(t)dt=Φ0+2πf0t+πSt2

  • Frequency multiplier ideally generates

    • Chirp signal with frequency N f r e f ( t ) Nf_{ref}(t) Nfref(t)
    • Bandwidth of N B NB NB
    • Slope of N S NS NS
    • Period of T c T_c Tc
  • Received signal related to transmitted signal

    • x R X ( t ) = G R x T X ( t − τ R ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right) xRX(t)=GRxTX(tτR),
    • GR: attenuation factor – G R = ( G A , T X G A , R X L s y s σ λ 2 ( 4 π ) 3 R 4 ) 1 2 G_R=\left(\frac{G_{\mathrm{A}, \mathrm{TX}} G_{\mathrm{A}, \mathrm{RX}} L_{\mathrm{sys}} \sigma \lambda^2}{(4 \pi)^3 R^4}\right)^{\frac{1}{2}} GR=((4π)3R4GA,TXGA,RXLsysσλ2)21
    • τ R \tau_R τR: time-of-flight – τ R 0 = 2 R 0 c \tau_{R_0}=\frac{2 R_0}{c} τR0=c2R0
  • Mixer + BPF output signal

    • instantaneous phase: Φ I F ( t ) = N Φ r e f ( t ) − N Φ r e f ( t − τ R ( t ) ) \Phi_{\mathrm{IF}}(t)=N \Phi_{\mathrm{ref}}(t)-N \Phi_{\mathrm{ref}}\left(t-\tau_R(t)\right) ΦIF(t)=NΦref(t)NΦref(tτR(t))

    • ⇒ \Rightarrow 大致表示一个正弦信号, frequency:

      f I F = ( N S ) τ R 0 + f D = ( 2 N S c ) R 0 + ( 2 N f 0 c ) v f_{\mathrm{IF}}=(N S) \tau_{R_0}+f_D=\left(\frac{2 N S}{c}\right) R_0+\left(\frac{2 N f_0}{c}\right) v fIF=(NS)τR0+fD=(c2NS)R0+(c2Nf0)v

    • 2D FFT to get Range and Velocity

2.2 FMCW Radar Nonlinear Model

A nonlinear system model which properly captures the circuit nonlinearities and interactions of different nonlinear effects with each other can be very valuable for efficient design of a mm-wave FMCW radar SoC.

在这里插入图片描述

2.2.1 Important nonlinear effects in FMCW radar system model:
  • Output harmonics of frequency multiplier

    • Neglect spurs from reference circuits like PLL or DDS

    • Harmonics level depends on:

      Multiplier circuit structure

      Frequency band

      Chirp bandwidth

      Quality factor of passive components

      IC process features

    • The output of the frequency multiplier

      x o u t , M U L ( t ) = ∑ k = 1 ∞ a k cos ⁡ [ k Φ r e f ( t ) ] x_{\mathrm{out}, \mathrm{MUL}}(t)=\sum_{k=1}^{\infty} a_k \cos \left[k \Phi_{\mathrm{ref}}(t)\right] xout,MUL(t)=k=1akcos[kΦref(t)]

  • Nonlinearity of PA

    • Can change harmonics’ relative amplitude
    • Especially at low supply voltages
  • Bandwidth of PA and TX

    • Bandwidth of PA: how output harmonics of the frequency multiplier reach to the TX antenna

      ✅ 受负载阻抗(用来最大化输出功率/efficiency)的限制

    • Bandwidth of Tx

      ✅ three possible scenarios: 在这里插入图片描述

      ✅ 本文:假设为情况(b)

    • 谐波 k k k的相对衰减系数

      A T X , k = ∣ H T X ( j k ω 0 ) ∣ ∣ H T X ( j N ω 0 ) ∣ A_{\mathrm{TX}, \mathrm{k}}=\frac{\left|H_{\mathrm{TX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{TX}}\left(j N \omega_0\right)\right|} ATX,k=HTX(jNω0)HTX(jkω0),

      ✅ 决定因素:信号分量之间的频率差、PA电路中使用的片上无源元件的质量因子,以及TX天线带宽。

  • TX-to-RX leakage signal

    • 产生原因 :天线之间的耦合 + 芯片基板的耦合

    • 后果 :desensitizes the RX circuits (特别是LNA) ⇒ \Rightarrow 掩盖目标

    • 解决 :目前的leakage cancellation已经可以做到 30~50dB

      ✅ still limits system performance

    • The received signal: x R X ( t ) = G R x T X ( t − τ R ) + G L x T X ( t − τ L ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right)+G_L x_{\mathrm{TX}}\left(t-\tau_L\right) xRX(t)=GRxTX(tτR)+GLxTX(tτL),

      ✅ leakage的后果can be different for short and long target ranges

  • Bandwidth of LNA and RX

    • 意义:决定了能够到达混频器的谐波信号

    • LNA bandwidth:

      ✅ modeld by two transfer functions – H in, LNA  ( j ω ) H_{\text {in, LNA }}(j \omega) Hin, LNA () and H out,LNA  ( j ω ) H_{\text {out,LNA }}(j \omega) Hout,LNA ()

      ✅ 分别对应 输入和输出匹配网络的 frequency responses

      ✅ 带宽限制因素: input matching network (负责提供optimum noise matching)

    • RX bandwidth:

      ✅ 仍使用上图(b) (the same as for the TX)

    • The relative attenuation of the harmonic k k k:

      A R X , k = ∣ H R X ( j k ω 0 ) ∣ ∣ H R X ( j N ω 0 ) ∣ A_{\mathrm{RX}, \mathrm{k}}=\frac{\left|H_{\mathrm{RX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{RX}}\left(j N \omega_0\right)\right|} ARX,k=HRX(jNω0)HRX(jkω0).

  • Switching operation of RX mixer

    • Generates intermodulation distortion (互调失真, IMD)
    • Mixes 参考信号和LNA输出中的不同谐波 ⇒ \Rightarrow 在IF上生成spurs
  • Bandwidth and attenuation of IF filter

    • 通带纹波 的影响
    • Fig. 3(a)的情况: distort the chirp signal ⇒ \Rightarrow undesired amplitude and phase modulations
2.2.2 Model Limitations

存在Limitations的原因

  • 模型考虑了 Most important effects for accurate radar performance evaluation
  • Higher order imperfections excluded for clarity
  • Apply approximations to keep model simple yet insightful

Limitations

  • Frequency multiplier

    • Can have large amplitude variations of fundamentals/harmonics across bandwidth
    • 此时,不能用 constant HRR (harmonic rejection ratio) 进行描述
    • 可使用 average/worst-case HRR
  • Largest harmonics of multiplier

    • May not be adjacent harmonics N±1
    • Attenuated by PA, LNA, TX/RX antennas
  • PA/LNA nonlinearity

    • Can significantly change across bandwidth
    • Frequency-dependent P 1 d B P_{1dB} P1dB makes analysis intractable
    • 解决:Use average P1dB for accuracy
    • 接下来的分析会假设 leakage does not saturate LNA
  • Reference signal spurs neglected

    • 本文仅Focus on spurs generated by radar
    • Reference信号中的Spurs: PLL spurs via mechanisms like quantization noise

3 Analysis of FMCW Radar System

利用FMCW雷达的非线性系统模型,研究以下信号的spectral contents:

  • TX输出
  • RX输入
  • IF
3.1 Analysis of Transmitter
  • Frequency multiplier output signal

    • x o u t , M U L ( t ) = a N [ cos ⁡ ( N Φ ) + k r e f cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{out}, \mathrm{MUL}}(t)=a_{\mathrm{N}}\left[\cos (N \Phi)+k_{\mathrm{ref}} \cos [(N \pm 1) \Phi]\right] xout,MUL(t)=aN[cos(NΦ)+krefcos[(N±1)Φ]],
    • Desired harmonic N
    • Two adjacent harmonics N±1
    • k r e f k_{\mathrm{ref}} kref related to HRR of multiplier
  • PA nonlinearity model output signal:

    • 3rd order polynomial: N Φ , 3 N Φ , ( N ± 1 ) Φ , ( N ± 2 ) Φ , ( N ± 3 ) Φ , ( 3 N ± 1 ) Φ , ( 3 N ± 2 ) Φ , ( 3 N ± 3 ) Φ N \Phi, 3 N \Phi,(N \pm 1) \Phi,(N \pm 2) \Phi,(N \pm 3) \Phi,(3 N \pm 1) \Phi,(3 N \pm 2) \Phi ,(3 N \pm 3) \Phi NΦ,3NΦ,(N±1)Φ,(N±2)Φ,(N±3)Φ,(3N±1)Φ,(3N±2)Φ,(3N±3)Φ,
    • Generates spectral regrowth
    • Output spectrum 3 times wider than input
  • TX

    • bandwidth allows N and N±1 harmonics
    • Relative attenuation of N±1: ATX
    • A T X , N ± 1 = A T X A_{\mathrm{TX}, \mathrm{N} \pm 1}=A_{\mathrm{TX}} ATX,N±1=ATX
    • (严格来说,TX system是一个动态非线性系统;本文,简化为一个 frequency-independent nonlinear model followed by a linear band-limited frequency response)
  • TX output signal derived using PA model

    • x T X ( t ) = a T X [ cos ⁡ ( N Φ ) + k T X cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{TX}}(t)=a_{\mathrm{TX}}\left[\cos (N \Phi)+k_{\mathrm{TX}} \cos [(N \pm 1) \Phi]\right] xTX(t)=aTX[cos(NΦ)+kTXcos[(N±1)Φ]],
    • 其中: a T X = α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 a_{\mathrm{TX}}=\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3 aTX=α1,PAAin+43(1+6kref2)α3,PAAin3, k T X = ( α 1 , P A A i n + 9 4 ( 1 + k r e f 2 ) α 3 , P A A i n 3 α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 ) A T X k r e f k_{\mathrm{TX}}=\left(\frac{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{9}{4}\left(1+k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}\right) A_{\mathrm{TX}} k_{\mathrm{ref}} kTX=(α1,PAAin+43(1+6kref2)α3,PAAin3α1,PAAin+49(1+kref2)α3,PAAin3)ATXkref.
    • Includes fundamental and harmonic components
    • Harmonics level k T X < k r e f k_{TX} < k_{ref} kTX<kref ⇒ \Rightarrow 意味着 TX输出时,谐波水平降低
    • 即:在非线性区域驱动PA,以减轻频率乘法器产生的谐波 + 提高PA效率 是有益的。
  • Key insights:

    • PA nonlinearity decreases harmonics level

      🚩 Beneficial to drive PA in nonlinear region

    • TX bandwidth should limit harmonics

      🚩 Filter can further suppress harmonics

3.2 Analysis of Receiver
  • Received signal :

    • Composed of target echo and TX-RX leakage
  • Without leakage signal :

    • LNA output signal derived using LNA nonlinearity model: x o u t , L N A ( t ) = a o u t , L N A [ cos ⁡ [ N Φ ( t − τ R ) ] + k R X cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & =a_{\mathrm{out}, \mathrm{LNA}}\left[\cos \left[N \Phi\left(t-\tau_R\right)\right]+k_{\mathrm{RX}} \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right]\right],\end{aligned} xout,LNA(t)=aout,LNA[cos[NΦ(tτR)]+kRXcos[(N±1)Φ(tτR)]],

    • IF signal
      x I F ( t ) = a I F [ cos ⁡ [ N Ψ 1 ( t ) ] + k r e f k R X cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] ] x_{\mathrm{IF}}(t)=a_{\mathrm{IF}}\left[\cos \left[N \Psi_1(t)\right]+k_{\mathrm{ref}} k_{\mathrm{RX}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right] xIF(t)=aIF[cos[NΨ1(t)]+krefkRXcos[(N±1)Ψ1(t)]]

      Ψ 1 ( t ) = Φ ( t ) − Φ ( t − τ R ) \Psi_1(t)=\Phi(t)-\Phi\left(t-\tau_R\right) Ψ1(t)=Φ(t)Φ(tτR)

      🚩 结论1:

  • Key insights:

    • 结论1:中频处的激励电平低于参考信号的原始谐波电平 (IF spurs level < reference harmonics level)
      k I F ≈ ( 1 − 3 β P i n , L N A P l d B , L N A 1 − β P i n , L N A P l d B , L N A ) ( 1 − 3 β P i n , P A P l d B , P A 1 − β P i n , P A P l d B , P A ) A R X A T X k r e f 2 k_{\mathrm{IF}} \approx\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}\right)\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}\right) A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIF(1βPldB,LNAPin,LNA13βPldB,LNAPin,LNA)(1βPldB,PAPin,PA13βPldB,PAPin,PA)ARXATXkref2.

    • 结论2:中频包含了三个频率分量: f I F 1 = N S τ R f_{\mathrm{IF} 1}=N S \tau_R fIF1=NSτR, f I F 2 = ( N + 1 ) S τ R f_{\mathrm{IF} 2}=(N+1) S \tau_R fIF2=(N+1)SτR, f I F 3 = ( N + 2 ) S τ R f_{\mathrm{IF} 3}=(N+2) S \tau_R fIF3=(N+2)SτR

      ✅ Spurs can cause overlap between IF spectra ⇒ \Rightarrow 降低雷达距离分辨率

图 2


  • With leakage signal:

    • 相当于LNA有两个输入 x in,LNA  ( t ) = x echo  ( t ) + x leak  ( t ) x_{\text {in,LNA }}(t)=x_{\text {echo }}(t)+x_{\text {leak }}(t) xin,LNA (t)=xecho (t)+xleak (t),
    • Leakage and LNA nonlinearity interaction generates extra spurs
    • LNA output signal includes spectral components related to leakage: x o u t , L N A ( t ) G R a T X [ C 1 cos ⁡ [ N Φ ( t − τ R ) ] + C 2 cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] + C 3 cos ⁡ [ N Φ ( t − τ L ) ] + C 4 cos ⁡ [ ( N ± 1 ) Φ ( t − τ L ) ] + C 5 cos ⁡ [ 2 N Φ ( t − τ R ) − N Φ ( t − τ L ) ] + C 6 cos ⁡ [ N Φ ( t − τ R ) − 2 N Φ ( t − τ L ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & \qquad G_R a_{\mathrm{TX}}\left[C_1 \cos \left[N \Phi\left(t-\tau_R\right)\right]\right. \\ & \quad+C_2 \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right] \\ & \quad+C_3 \cos \left[N \Phi\left(t-\tau_L\right)\right]+C_4 \cos \left[(N \pm 1) \Phi\left(t-\tau_L\right)\right] \\ & \quad+C_5 \cos \left[2 N \Phi\left(t-\tau_R\right)-N \Phi\left(t-\tau_L\right)\right] \\ & \left.\quad+C_6 \cos \left[N \Phi\left(t-\tau_R\right)-2 N \Phi\left(t-\tau_L\right)\right]\right],\end{aligned} xout,LNA(t)GRaTX[C1cos[NΦ(tτR)]+C2cos[(N±1)Φ(tτR)]+C3cos[NΦ(tτL)]+C4cos[(N±1)Φ(tτL)]+C5cos[2NΦ(tτR)NΦ(tτL)]+C6cos[NΦ(tτR)2NΦ(tτL)]],
    • IF signal x I F ( t ) ≈ a I F [ C 1 cos ⁡ [ N Ψ 1 ( t ) ] + C 2 k r e f cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] + C 3 cos ⁡ [ N Ψ 2 ( t ) ] + C 4 k r e f cos ⁡ [ ( N ± 1 ) Ψ 2 ( t ) ] + C 5 cos ⁡ [ N Ψ 3 ( t ) ] + C 6 cos ⁡ [ N Ψ 4 ( t ) ] ] \begin{aligned} x_{\mathrm{IF}}(t) \approx & a_{\mathrm{IF}}\left[C_1 \cos \left[N \Psi_1(t)\right]+C_2 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right. \\ & +C_3 \cos \left[N \Psi_2(t)\right]+C_4 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_2(t)\right] \\ & \left.+C_5 \cos \left[N \Psi_3(t)\right]+C_6 \cos \left[N \Psi_4(t)\right]\right]\end{aligned} xIF(t)aIF[C1cos[NΨ1(t)]+C2krefcos[(N±1)Ψ1(t)]+C3cos[NΨ2(t)]+C4krefcos[(N±1)Ψ2(t)]+C5cos[NΨ3(t)]+C6cos[NΨ4(t)]]
  • The Spurs level in the IF:

    • k I F ≈ [ 1 + r 2 − β ( 3 + 2 r 2 ) P i n , L N A P 1   d B , L N A 1 + r 2 − β ( 1 + 2 r 2 ) P i n , L N A P 1   d B , L N A ] [ 1 − 3 β P i n , P A P d d B , P A 1 − β P i n , P A P 1   d B , P A ] × A R X A T X k r e f 2 . \begin{gathered}k_{\mathrm{IF}} \approx\left[\frac{1+r^2-\beta\left(3+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}{1+r^2-\beta\left(1+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}\right]\left[\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ddB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{1 \mathrm{~dB}, \mathrm{PA}}}}\right] \\ \times A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 .\end{gathered} kIF 1+r2β(1+2r2)P1 dB,LNAPin,LNA1+r2β(3+2r2)P1 dB,LNAPin,LNA 1βP1 dB,PAPin,PA13βPddB,PAPin,PA ×ARXATXkref2.

    • 取决于:

      Reference harmonics

      Leakage signal power

      PA/LNA nonlinearity

      TX/RX bandwidth

      IF filter attenuation

    • PA和LNA工作在线性功率范围时 (即 P i n , P A ≪ P 1   d B , P A P_{\mathrm{in}, \mathrm{PA}} \ll P_{1 \mathrm{~dB}, \mathrm{PA}} Pin,PAP1 dB,PA and P i n , L N A ≪ P 1   d B , L N A P_{\mathrm{in}, \mathrm{LNA}} \ll P_{1 \mathrm{~dB}, \mathrm{LNA}} Pin,LNAP1 dB,LNA):

      k I F ≈ A R X A T X k r e f 2 k_{\mathrm{IF}} \approx A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIFARXATXkref2.

      🚩 ⇒ \Rightarrow PA和LNA的非线性有利于降低谐波 (因为上式中的前两项总是小于1)

  • Leakage signal

    • Introduces new undesired components

    • 如下图Fig 6所示

    • 该理论能够指导:当给定相对泄露功率时,所需要的IF BPF阻带衰减

      A I F , L / H A_{IF,L/H} AIF,L/H 需使得 k I F , I I < k I F k_{\mathrm{IF}, \mathrm{II}}<k_{\mathrm{IF}} kIF,II<kIF & k I F , I V < k I F k_{\mathrm{IF}, \mathrm{IV}}<k_{\mathrm{IF}} kIF,IV<kIF

在这里插入图片描述

图 3

3.3 Radar Dynamic Range
  • Radar dynamic range (DR) :

    • D R n o i s e DR_{noise} DRnoise : Difference between RX signal power and noise floor

    • D R s p u r DR_{spur} DRspur (DR = D R s p u r DR_{spur} DRspur, 如果spur功率高于噪声功率): Difference between signal power and maximum spur level

  • DR can be maximized by:

    • Limiting largest spur below noise floor

    • D R s p u r = D R n o i s e DR_{spur} = DR_{noise} DRspur=DRnoise

  • D R s p u r DR_{spur} DRspur can be derived as:

    • − 20 log ⁡ 10 ( k I F , max ⁡ ) = P R X , max ⁡ + 174 − N F − 10 log ⁡ 10 ( B n ) -20 \log _{10}\left(k_{\mathrm{IF}, \max }\right)=P_{\mathrm{RX}, \max }+174-N F-10 \log _{10}\left(B_n\right) 20log10(kIF,max)=PRX,max+174NF10log10(Bn),

    • P R X , m a x P_{RX,max} PRX,max: Maximum RX input power

    • N F NF NF: Noise figure

    • B n B_n Bn: Noise bandwidth

    • k I F , max ⁡ k_{\mathrm{IF}, \max } kIF,max: Maximum spur level in IF

  • 上述对DR的限制能够作为约束计算如下参数:

    • Frequency multiplier harmonics

    • TX-RX leakage power

    • PA/LNA nonlinearity

4 Simulations and Discussions

4.1 Simulation Setup
  • 140 GHz chirp signal, 5 GHz bandwidth
  • ×8 frequency multiplier (17.5G reference signal) with -20 dBc harmonics
  • ADS and MATLAB used for TX/RX circuit modeling
  • Target: at 10 m range
4.2 Radar IF Spectrum
  • Compared theory and simulations for various nonlinearities

  • Impact of circuit nonlinearities on radar IF spectrum

在这里插入图片描述

  • Impact of leakage signal:
    • ≤0.5 dB difference up to 0 dB leakage power
    • Discrepancy increases to 2-3 dB at higher leakage
    • Extra spur observed besides two harmonic spurs
    • Amplitude matches theory
    • Location depends on leakage delay

在这里插入图片描述

Developed model provides accurate results

4.3 Radar Range-Doppler Diagram
  • Shows probability of false alarm due to spurs
  • Reduced with PA/LNA nonlinearity
  • Leakage signal spur increases false alarm

在这里插入图片描述

  • Developed theory provides:
    • Guidelines for IF filter attenuation
    • Required harmonic/leakage/nonlinearity levels

5 Conclusion

  • 本文为FMCW毫米波系统的分析提供了一个非线性模型
  • 模型考虑了收发机的多个组件带来的影响
  • 能够预测雷达IF中Spurs的频率和幅度,为电路设计提供参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1156987.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

文件操作---IO

文章目录 什么是文件&#xff1f;文件的路径文件的系统操作文件的内容操作面向字节流面向字节流的读操作&#xff08;InputStream&#xff09;面向字节流的写操作&#xff08;OutputStream&#xff09; 面向字符流面向字符流的读操作&#xff08;Reader&#xff09;面向字符流的…

【数智化人物展】途牛旅游网副总裁王树柏:人性化深耕,数智化赋能,合力共促企业可持续发展...

王树柏 本文由途牛旅游网副总裁王树柏投递并参与《2023中国企业数智化转型升级先锋人物》榜单/奖项评选。 数据智能产业创新服务媒体 ——聚焦数智 改变商业 数字经济时代下&#xff0c;科技与信息的红利快速释放。“数智化”是这个时代所有企业都要面对的大趋势、大机遇。“数…

mybatis条件构造器(加强版CURD)

文章目录 1.Wrapper介绍2.QueryWrapper3.UpdateWrapper4.condition5.LambdaQueryWrapper6.LambdaUpdateWrapper 1.Wrapper介绍 Wrapper &#xff1a; 条件构造抽象类&#xff0c;最顶端父类 AbstractWrapper &#xff1a; 用于查询条件封装&#xff0c;生成 sql 的 where 条件 …

ByteBuffer的原理和使用详解

ByteBuffer是字节缓冲区&#xff0c;主要用户读取和缓存字节数据&#xff0c;多用于网络编程&#xff0c;原生的类&#xff0c;存在不好用&#xff0c;Netty采用自己的ByteBuff&#xff0c;对其进行了改进 1.ByteBuffer的2种创建方式 1.ByteBuffer buf ByteBuffer.allocate(i…

如何利用GPT大语言模型来进行A股投资分析

在当今的金融市场中&#xff0c;投资已经成为了许多人增加财富的重要途径。然而&#xff0c;投资并非易事&#xff0c;需要对市场有深入的理解和精准的判断。在这个过程中&#xff0c;工具的选择和使用就显得尤为重要。今天&#xff0c;我们将介绍一种结合了GPT大语言模型的投资…

基于u-box GPS模块通过串口指令调整输出信息

基于u-box GPS模块通过串口指令调整输出信息 ✨当然借助u-center_v22.07上位机软件&#xff0c;可以很方便的修改和调整输出信息以及配置&#xff0c;本次主要是通过该软件提取对应的配置指令&#xff0c;用于给单片机来配置GPS模块提供方便&#xff0c;从而不依赖通过电脑上位…

任正非说:如此华为公司怎么会垮掉呢?我坚信华为红旗永不倒!

你好&#xff01;这是华研荟【任正非说】系列的第25篇文章&#xff0c;让我们聆听任正非先生的真知灼见&#xff0c;学习华为的管理思想和管理理念。 一、我们要持续地表彰那些为IT S&P、IPD、ISC、海外ERP、IFS……做出贡献的人。昨天他们努力时&#xff0c;看起来是笨拙的…

快速搭建自己的应用,尽在 YonBuilder:让你的想法瞬间成真!

目录 一、前言 1、一款出色的低代码开发平台是什么样&#xff1f; 2、什么是YonBuilder&#xff1f; 二、使用YonBuilder创建一个可视化应用 1、流程介绍 2、测试思路 3、环境准备 4、应用创建 5、数据建模 6、页面建模 7、数据分析 8、页面发布 三、总结 1、站在…

算法与数据结构-分治算法

文章目录 什么是分治算法分治算法应用举例分析分治思想在海量数据处理中的应用 什么是分治算法 分治算法&#xff08;divide and conquer&#xff09;的核心思想其实就是四个字&#xff0c;分而治之 &#xff0c;也就是将原问题划分成 n 个规模较小&#xff0c;并且结构与原问…

Kubuntu安装教程

目录 1.介绍 2.安装 3.配置 更新软件 中文输入法 美化 1.介绍 Kubuntu&#xff0c;是众多Ubuntu分支的一种&#xff0c;它采用KDE Plasma桌面为其默认桌面环境。它和Ubuntu采用同样的底层系统和软件库。基本上&#xff0c;Kubuntu和Ubuntu没有太大的差异&#xff0c;只是…

警惕听力下降的七大因素,一定要当心

随着现代社会的高速发展&#xff0c;工作生活节奏的加快&#xff0c;各种压力增大&#xff0c;再加上熬夜&#xff0c;长期佩戴耳机、饮食油腻辛辣等不良生活习惯的影响&#xff0c;听力损伤人群越来越多&#xff0c;已经不仅仅影响老年人群&#xff0c;近年来&#xff0c;听力…

Avro 如何生成java Bean

作为一种很犀利的序列化的格式&#xff0c;avro在大数据量传输的时候很有优势。记录下。 1&#xff1a; .avsc 文件 {"namespace": "com.avro.bean","type": "record","name": "UserBehavior3","fields&qu…

第17期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练 Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…

气象学基础知识:城市/大气/对流边界层

气象学基础知识&#xff1a;城市/大气/对流边界层 1 城市边界层&#xff08;urban boundary layer, UBL&#xff09;1.1 定义1.2 城市边界层结构的影响因素 2 大气边界层&#xff08;Atmospheric boundary layers, ABL&#xff09;&#xff1a;2.1 定义2.2 大气动力层分层&…

前端基础之CSS

目录 一、CSS介绍 CSS语法 CSS注释 CSS的几种引入方式 二、CSS选择器 基本选择器 组合选择器 属性选择器 分组和嵌套选择器 伪类选择器 伪元素选择器 选择器的优先级 三、CSS属性相关 宽和高 字体属性 文字属性 背景属性 边框 border-radius display属性 …

【已解决】虚拟机之前能正常上网,重启之后无法连接网络问题的解决方法

虚拟机之前网络正常&#xff0c;重启之后却始终连接不上网络。 找了许多方法&#xff0c;终于发现一种便捷有效的方法。 解决方法如下&#xff1a; 1、将网络模式更改为NAT模式., 2、打开终端窗口&#xff0c;输入如下命令。 sudo service network-manager stopsudo rm /var/l…

R数据分析:反事实框架和因果中介的理论理解

其实很早之前给大家写中介分析的做法的时候我也有思考过当中介变量或者因变量不是连续变量的时候&#xff0c;中介怎么做&#xff1f;或者说这个时候中介的结果如何解释&#xff1f;当时反正是一直没有太想明白这些问题&#xff0c;毕竟这些情况在发表的文献中也较少见&#xf…

作为20年老程序员,我如何使用GPT4来帮我写代码

如果你还在用google寻找解决代码bug的方案&#xff0c;那你真的out了&#xff0c;试试gpt4, save my life. 不是小编危言耸听&#xff0c;最近用gpt4来写代码极大地提高了代码生产力和运行效率&#xff0c;今天特地跟大家分享一下。 https://www.promptspower.comhttps://www.…

.WP、.WL、.WT格式数据转Shp解决方案

下载 http://dt3.8tupian.net/2/29913a52b1000.pg3操作办法&#xff1a;mapgis创建数据库——导入.WP、.WL、.WT格式数据——导出shp数据 (1)安装mapgis10.6高级版&#xff08;有一个月得试用期&#xff09;&#xff1b; (2)打开mapgis右侧MapGISLocal右键创建数据库&#xff…

Day15力扣打卡

打卡记录 使数组变美的最小增量运算数&#xff08;动态规划&#xff09; 链接 class Solution { public:long long minIncrementOperations(vector<int>& nums, int k) {long long f0 0, f1 0, f2 0;for (int x : nums) {long long inc f0 max(k - x, 0);f0 …