本文详细讲解了 ReentrantLock 加锁和释放锁的原理,以及和 Synchronized 的对比。本文较长,建议收藏!
点击上方“后端开发技术”,选择“设为星标” ,优质资源及时送达
简要总结 ReentrantLock
实现原理:volatile 变量 + CAS设置值 + AQS + 两个队列
实现阻塞:同步队列 + CAS抢占标记为 valatile 的 state
实现等待唤醒:await :持有锁,park ->加入等待队列 ;signal:唤醒下一个等待队列节点,转移进入同步队列,然后CAS抢占或者按照阻塞队列等待抢占。接着 await 后续内容程序得以继续执行。
ReentrantLock 结构分析
ReentrantLock 继承了Lock接口, lock方法实际上是调用了Sync的子类NonfairSync(非公平锁)的lock方法。ReentrantLock的真正实现在他的两个内部类NonfairSync 和 FairSync中,默认实现是非公平锁。并且内部类都继承于内部类Sync,而Sync根本的实现则是大名鼎鼎的 AbstractQueuedSynchronizer
同步器(AQS)。

具体详见如下代码:
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
/** Synchronizer providing all implementation mechanics */
private final Sync sync;
public ReentrantLock() {
sync = new NonfairSync();
}
abstract static class Sync extends AbstractQueuedSynchronizer {
……省略代码
}
//非公平锁
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
// 公平锁
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
……省略
}
}
// lock 方法本质就是调用sync类
public void lock() {
sync.lock();
}
}
lock 加锁过程
按照调用 lock
方法是否抢占锁成功,可以以调用 park 方法为界限,将加锁的过程分为两部分:一部分是当前线程被阻塞前,另一部分是线程被唤醒继续执行后。(这里以非公平锁为例)
阻塞前
1.直接通过CAS尝试获取锁,设置state为1。如果获取成功则将锁标识设为独占,就是是将当前线程设置给 exclusiveOwnerThread。
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
2.如果获取失败,再次尝试获取,调用acquire。
3.tryAcquire ->:判断锁是否被占有,如果空闲则再次尝试CAS获取锁;如果已被占有则对比占有锁的线程是否为本线程,是的话将state+1,这就是可重入锁的关键逻辑。
//AbstractQueuedSynchronizer
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//ReentrantLock.NonfairSync
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
//ReentrantLock.Sync
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// cas再次尝试获取
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 可重入逻辑
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
4.如果获取失败则将节点插入队列尾部,如果队列为空,则会初始化队列,并且设置头尾节点为空节点,再将Node设为尾节点。
// 获取锁失败
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
// 加入同步队列
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
// 通过CAS设置尾节点为当前节点,前驱节点为之前的尾节点。
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 如果当前链表为空,则在此处进行初始化
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 追加到队列尾
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
5.将新建的Node传入acquireQueued
,获取前驱节点,如果节点就是head 头节点,那么尝试CAS竞争锁(head随时释放)。如果抢占成功将头节点设为自己。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
// 如果是头节点,再次尝试
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
6.如果没有抢占成功,则进入shouldParkAfterFailedAcquire
逻辑,将前驱节点设置为Signal,表示后继节点(也就是当前节点)需要前驱节点去唤醒。设置完之后再次进入自旋锁,尝试获得锁。
关于Node的状态这里说明一下:
节点刚创建的时候,status=0,假设这时候本节点就是head节点,那么他会进入else逻辑,将自身状态设置为Signal,然后再次进入自旋,尝试获取锁。如果还是没有获取到锁,那么再次进入shouldParkAfterFailedAcquire
方法后会进入第一个if逻辑,方法返回True。
/**
* Checks and updates status for a node that failed to acquire.
* Returns true if thread should block. This is the main signal
* control in all acquire loops. Requires that pred == node.prev.
* 如果获取锁失败,检查并且更新节点。如果需要被park阻塞,返回true。
* 在所有的循环逻辑中,这是主要的信号控制逻辑。
*
* pred:表示前驱节点
* node:表示当前线程节点
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
// 第二次尝试获取锁会进入这段逻辑
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
// 表明线程已经准备好被阻塞并等待之后被唤醒
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
// 若pred.waitStatus状态位大于0,说明这个前驱点已经取消了获取锁的操作,
// doWhile循环会递归删除掉这些放弃获取锁的节点
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* 节点刚创建的时候,status=0,逻辑会走到这里将自身状态设置为signal
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
//若状态位不为Node.SIGNAL,且没有取消操作,则会尝试将前驱节点状态位修改为Node.SIGNAL
// 表示将会唤醒后继节点
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
7.第二次自旋获取失败后,由于前驱节点已经是Signal,这时进入parkAndCheckInterrupt,将当前线程阻塞,等待被唤醒。后续其他线程如果也尝试抢占锁,会同样被阻塞。
private final boolean parkAndCheckInterrupt() {
// 阻塞线程
LockSupport.park(this);
// 线程继续执行
return Thread.interrupted();
}
park方法被唤醒后
在其他线程释放锁资源后,唤醒下一个节点,park
的后半部分逻辑继续执行。
继续执行之前Park之后的逻辑,在此处线程被唤醒。这里会返回中断标记,这也是为什么ReentrantLock可以相应中断的原因。

然后再次进入自旋锁,使用CAS获取到锁标记,将头节点设为当前节点,然后返回中断标记跳出循环。
至此,获取锁流程结束。
unlock 释放锁过程
1.尝试释放锁,用state减去1,判断是否等于0。如果等于0表示已经完全释放锁,将线程标记设为null。否则释放失败,表示当前线程仍在继续持有,继续持有说明有重入情况。
// ReentrantLock
public void unlock() {
sync.release(1);
}
// AQS
public final boolean release(int arg) {
// 释放锁
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
// 唤醒后继节点
unparkSuccessor(h);
return true;
}
return false;
}
// 释放锁
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
// 释放锁
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
2.拿到头节点,然后解锁后继节点。如果当前节点状态小于0(signal=-1),则修改节点status为0。然后向后递归找到status小于等于0的节点(正常为0),调用unpark解除阻塞。返回解锁成功。
// 唤醒后继节点
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
// 拿到下一个节点
Node s = node.next;
//要解除阻塞的线程在后继节点中,通常只是下一个节点。但如果取消或明显为空,则从尾部向前遍历以找到实际未取消的继任者。
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//解锁
LockSupport.unpark(s.thread);
}

3.在这之后便继续开始执行之前被阻塞的线程中的逻辑。
到这里 ReentrantLock 的加解锁过程原理便讲解结束,关于条件队列的内容,有兴趣后续文章会做讲解。
对比 Synchronized
既然已经了解了 ReentrantLock ,那么在此对大家所熟知的 Synchronized 进行一个对比。
与Synchronized相同点:
1.ReentrantLock和synchronized都是独占锁,只允许线程互斥的访问临界区。
但是实现上两者不同:synchronized加锁解锁的过程是隐式的,用户不用手动操作,优点是操作简单,但显得不够灵活。一般并发场景使用synchronized的就够了;ReentrantLock需要手动加锁和解锁,且解锁的操作尽量要放在finally代码块中,保证线程正确释放锁。ReentrantLock操作较为复杂,但是因为可以手动控制加锁和解锁过程,在复杂的并发场景中能派上用场。
2.ReentrantLock和synchronized都是可重入锁。
synchronized因为可重入因此可以放在被递归执行的方法上,且不用担心线程最后能否正确释放锁;而ReentrantLock在重入时要却确保重复获取锁的次数必须和重复释放锁的次数一样,否则可能导致其他线程无法获得该锁。
3.都可以实现线程之间的等待通知机制。使用synchronized结合Object上的wait和notify方法可以实现线程间的等待通知机制。ReentrantLock结合Condition接口同样可以实现这个功能。而且相比前者使用起来更清晰也更简单。
与Synchronized 不同点:
ReentrantLock是Java层面的实现,synchronized是JVM层面的实现。
使用synchronized关键字实现同步,线程执行完同步代码块会自动释放锁(a 线程执行完同步代码会释放锁 ;b 线程执行过程中发生异常会释放锁),而ReentrantLock需要手动释放锁需在finally中手工释放锁(unlock()方法释放锁),否则容易造成线程死锁。
synchronized是非公平锁,ReentrantLock可以实现公平和非公平锁。
ReentrantLock 可以设置超时获取锁。在指定的截止时间之前获取锁,如果截止时间到了还没有获取到锁,则返回。配合重试机制更好的解决死锁。
ReentrantLock上等待获取锁的线程是可中断的,线程可以放弃等待锁。而synchonized会无限期等待下去。
ReentrantLock 的 tryLock() 方法可以尝试非阻塞的获取锁,调用该方法后立刻返回,如果能够获取则返回true,否则返回false。
synchronized无法判断是否获取锁的状态,Lock可以判断是否获取到锁,并且可以主动尝试去获取锁。
最后,欢迎大家提问和交流。
如果对你有帮助,欢迎点赞、评论或分享,感谢阅读!
update在MySQL中是怎样执行的,一张图牢记|原创
2022-11-19

从二叉查找树到B*树,一文搞懂搜索树的演进!|原创
2022-11-14

问到ThreadLocal,看这一篇就够了|原创
2022-10-13
