核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。
一、技术架构设计
二、轻量化模型开发(以TensorFlow Lite为例)
模型选择:MobileNetV3-Small + 量化感知训练
优势:参数量<1M,支持INT8量化,CPU推理<50ms
关键代码示例:
# 模型构建(Python服务端训练)
import tensorflow as tf
from tensorflow.keras.layers import Dense
def build_mobilenetv3(input_shape=(128, 128, 1), num_classes=2):
base = tf.keras.applications.MobileNetV3Small(
input_shape=input_shape,
alpha=0.5, # 宽度缩放因子
include_top=False,
weights=None
)
model = tf.keras.Sequential([
base,
tf.keras.layers.GlobalAveragePooling2D(),
Dense(32, activation='relu'),
Dense(num_classes, activation='softmax')
])
return model
# 量化感知训练
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.int8]
tflite_quant_model = converter.convert()
三、边缘设备部署方案
1. 智能手表端(Wear OS示例)
// Android心率异常检测
class HealthMonitorService : Service() {
private val interpreter: Interpreter by lazy {
Interpreter(loadModelFile("model_quant.tflite"), Interpreter.Options().apply {
setUseNNAPI(true) // 启用硬件加速
})
}
fun predictRisk(sensorData: FloatArray): Float {
val input = ByteBuffer.allocateDirect(128*128*1).order(ByteOrder.nativeOrder())
val output = Array(1)