论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

news2025/6/13 10:12:11

Muffin 论文

  • 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。
  • API 库覆盖低,因为各个 API 都是在各种具体场景下使用。

Muffin首先生成DAG作为结构信息,然后利用一种贪婪的层选择算法来生成层信息。通过这种方式,Muffin能够生成多样化的DL模型。为了进行差异性测试,Muffin在模型训练阶段执行数据跟踪分析。特别是,Muffin从不同的训练阶段(即正向计算(FC)、损失计算(LC)和反向计算(BC))收集数据跟踪。然后,它根据一套提出的指标来检测不同库之间的不一致性,这些指标衡量连续层的输出变化。
在这里插入图片描述
借鉴 NAS 生成模版,生成 chain structure with skips、cell-based structure(structure information),同时确保生成的 DAG,只有一个入度为 0 的顶点作为输入层,只有一个出度为 0 的顶点作为输出层,没有孤立点。在逐个实例化时,考虑输入数量限制、输入/输出形状限制,并且为了增加拓扑多样性,设计了基于适应度比例选择的方法。 s = 1 c + 1 p = s ∑ k = 1 r s k s=\frac{1}{c+1} \quad p=\frac{s}{\sum_{k=1}^rs_k} s=c+11p=k=1rsks
同一层输出差异: D ( X , Y ) = m a x m ( ∣ x m − y m ∣ ) D(X,Y)=max_m(|x_m-y_m|) D(X,Y)=maxm(xmym)

  • 正向计算:比较当前层 l i l_i li ​的输出与它的前驱层 l p l_p lp ​的输出差异: I n c _ F C = { l i , i ∈ [ 1 , n ] ∣ ( D ( O j i , O k i ) > t ) ∧ ( D ( O j p , O k p ) < ϵ , p ∈ P ( i ) ) } Inc\_{FC}=\{l_{i},i\in[1,n]\mid(D(O_{j}^{i},O_{k}^{i})>t)\wedge(D(O_{j}^{p},O_{k}^{p})<\epsilon,p\in P(i))\} Inc_FC={li,i[1,n](D(Oji,Oki)>t)(D(Ojp,Okp)<ϵ,pP(i))} 切比雪夫距离定义为两个张量在任何坐标维度上的最大差异。这种距离度量方法可以避免因张量形状不同而导致的比较问题。
  • 损失函数:比较损失函数的输出和梯度值的差异: I n c _ L C = { L ∣ ( ( ∣ L O j − L O k ∣ > t ) ∨ ( ∣ L G j − L G k ∣ > t ) ) ∧ ( D ( O j n , O k n ) < ϵ ) } Inc\_{LC}=\{L\mid((|LO_j-LO_k|>t)\lor(|LG_j-LG_k|>t))\wedge(D(O_j^n,O_k^n)<\epsilon)\} Inc_LC={L((LOjLOk>t)(LGjLGk>t))(D(Ojn,Okn)<ϵ)}
  • 反向传播:比较每一层的梯度值差异: I n c _ B C = { l i , i ∈ [ 1 , n ] ∣ ( D ( G j i , G k i ) > t ) ∧ ( D ( G j s , G k s ) < ϵ , s ∈ P ( i ) ) } Inc\_{BC}=\{l_{i},i\in[1,n]\mid(D(G_{j}^{i},G_{k}^{i})>t)\wedge(D(G_{j}^{s},G_{k}^{s})<\epsilon,s\in P(i))\} Inc_BC={li,i[1,n](D(Gji,Gki)>t)(D(Gjs,Gks)<ϵ,sP(i))}

虽然这种方式产生了巨大的模型拓扑多样性,但从微观层面而言,Structure内的多样性是匮乏的。

参数:

  1. MAXc:用于控制模型结构的大小,具体来说是控制模型中层的最大数量。
  2. MAXv:同样用于控制模型结构的大小,具体来说是控制模型中每个层的最大输入维度。
  3. t:用于不一致性检测的阈值。在比较不同库的输出差异时,如果差异大于这个阈值,则认为存在不一致性。
  4. ε:另一个用于不一致性检测的阈值,通常是一个很小的值,用于判断差异是否足够小以至于可以认为是正常的浮点数偏差。

实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2407063.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…