OCR MLLM Evaluation

news2025/6/10 16:48:24

为什么需要评测体系?——背景与矛盾

​​

  • 能干的事:​​ 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。
  • ​​干不了的事:​​ 碰到复杂表格(合并单元格)、跨页合同(前后条款关联)、模糊发票(猜意思)就懵圈了。
传统OCR的瓶颈
  • 优势

    • 文字识别准确率 >90%
    • 响应快(毫秒级)
    • 广泛应用于票据、合同等场景
  • 短板

    • 难以处理复杂结构,如合并单元格表格、跨页合同逻辑、模糊发票语义推断
多模态大模型(MLLMs)的崛起
  • 能力

    • 视觉问答、图文推理、信息提取
    • 展现强大泛化能力
  • 现实挑战

    • 在 OCRBench v2 测试中,22个主流模型有20个得分低于50分(满分100)
  • 暴露问题

    • 找不准字的位置(文本定位差)。
    • 看不懂手写的字(手写识别弱)。
    • 理解不了文字背后的逻辑(推理不行)。
    • 在专业领域(金融、医疗)容易出错。
核心矛盾
  • MLLMs 宣称“全能”,但在关键行业(金融/医疗/政务)仍不可靠。
  • 评测体系成为筛选可靠模型的“照妖镜”。

评测体系全景图——19个关键基准解析

按任务类型分类速览
评测方向代表基准核心任务发现的问题
文字识别(OCR)OCRBench v2、CC-OCR多语言文本、复杂排版、手写体识别对生僻字、模糊文本、多方向文字识别率低
图表理解ChartX、ChartY、MMC数据提取、趋势分析、图表转表格常误读坐标轴、混淆数据关系
表格解析TableVQA-Bench、ComTQA表格结构识别、跨单元格推理、数学计算图像表格识别精度远低于纯文本表格
文档理解Fox、ConTextual跨页合同关联、区域聚焦翻译、上下文推理难以定位细粒度信息
视频推理Video-MME长视频事件链理解、跨模态分析>1小时视频理解准确率骤降
专业领域DesignQA工程图纸合规判断、规则文档关联专业术语和图纸符号理解错误率高
基础感知BLINK相对深度判断、图像篡改检测人类秒懂的任务,模型正确率仅50%左右
典型案例
  • GPT-4V 在医疗图表分析中误读数据,导致诊断建议错误
  • Gemini 在金融合同跨页条款关联中漏判关键信息

评测体系揭示的行业真相

MLLMs 尚未颠覆传统OCR
  • 简单场景:传统OCR仍占优(速度快、成本低)
  • 复杂场景:MLLMs有潜力但需针对性优化(如金融表格用Fox基准调优)
模型能力严重不均衡
  • 图文描述能力强 ≠ 专业推理能力强(e.g. 能写诗但算错财务报表)
  • 英文表现好 ≠ 中文表现好(CC-OCR 显示中文OCR准确率低15%+)
幻觉问题无处不在
  • 在模糊图像中“脑补”错误文本(ConTextual 基准中错误率 ↑30%)
  • 专业领域“一本正经胡说八道”(DesignQA 中合规判断错误率超40%)
  • 大模型容易“幻觉”瞎编:​​ 看不清或看不懂时,它们倾向于​​自信地胡说八道​​(比如编造发票号码、误读图表数据),这在要求​​零错误​​的金融、医疗场景非常危险!评测就是用来暴露这些毛病的。

建议

选模型先看评测
  • 金融场景:关注 Fox(文档)、ComTQA(表格)
  • 医疗场景:优先 ChartX(医学图表)、MMC(报告理解)
  • 多语言需求:验证 CC-OCR、Omni AI OCR 成绩

​​选模型要看“考分”:​​ 如果你的需求是:

  • 理解复杂合同/跨页文档 → 重点看 ​​Fox​​ 成绩。
  • 解析财务报表图片 → 重点看 ​​ComTQA​​、​​TableVQA-Bench​​ 成绩。
  • 看懂医学影像报告图表 → 重点看 ​​ChartX​​、​​MMC​​ 成绩。
  • 需要多语言识别 → 重点看 ​​CC-OCR​​、​​Omni AI OCR​​ 成绩。
警惕“通用模型”宣传
  • 即使 GPT-4V/Gemini 也在专业场景翻车,垂直领域仍需微调
  • 开源模型(如 Table-LLaVA)在表格任务已接近 GPT-4V,成本更低
  • ​​ 没有哪个模型真能在所有方面都拿高分。它们在特定任务上可能很强,但在另一些任务(尤其是需要精准、逻辑、专业知识的)上很弱。
  • ​​别急着扔掉“认字高手”:​​ 对于只要求看清标准票据、身份证上字的应用,又快又准又便宜的传统OCR还是​​首选​​!大模型在这上面没优势还更贵更慢。
未来方向
  • 评测体系本身在进化:从单任务 → 多任务耦合(如 MMT-Bench)考题越来越难,越来越贴近真实复杂场景。
  • 模型优化新思路
    • 增加“感知验证层”(如 ChartVLM 先解析结构再推理)
    • 注入领域知识(DesignQA 证明专业数据提升合规判断准确率20%+)
    • 针对特定短板(比如表格)训练专用模型效果更好(如 ​​Table-LLaVA​​)
    • ​​融合是趋势:​​ 最佳方案可能是让“认字高手”(传统OCR)先提取准确文字,再让“学霸”(大模型)去理解推理,各司其职。

“OCR 与多模态大模型不是替代关系,而是协作进化——评测体系如同导航仪,在技术爆发期帮企业绕过陷阱,驶向真正可靠的落地场景。”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2406841.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…

6.9-QT模拟计算器

源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例&#xff1a; 某医药分销企业&#xff0c;主要经营各类药品的批发与零售。由于药品的特殊性&#xff0c;效期管理至关重要&#xff0c;但该企业一直面临效期问题的困扰。在未使用WMS系统之前&#xff0c;其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…