【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

news2025/6/10 13:59:18

文章目录

      • A 论文出处
      • B 背景
        • B.1 背景介绍
        • B.2 问题提出
        • B.3 创新点
      • C 模型结构
        • C.1 指令微调阶段
        • C.2 排名与生成的总和指令微调阶段
        • C.3 RankRAG推理:检索-重排-生成
      • D 实验设计
      • E 个人总结

A 论文出处

  • 论文题目:RankRAG:Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
  • 发表情况:2024-NeurIPS

B 背景

B.1 背景介绍

检索增强生成(RAG)技术被广泛应用于定制化的大语言模型(LLMs),使其能够有效处理长尾知识、集成最新信息,并适应特定领域或任务需求,且无需调整模型权重。其流程包含两个核心阶段:首先,基于语义嵌入的检索器从文档集合或外部知识源中,查询并检索语义最相关的k个上下文片段;随后,大语言模型读取这些检索到的上下文片段,据此生成最终答案。这种技术可以显著增强大语言模型在专业与时效性场景下的知识利用能力。

B.2 问题提出

(1)检索器容量约束:出于计算效率考量,现有RAG系统普遍采用检索能力受限的组件,如基于词汇匹配的稀疏检索方法(BM25)或参数量适中的嵌入模型(BGE、BERT)。这在一定程度上制约了其捕捉深层语义关联的能力。

(2)Top-K 检索策略的固有局限: 尽管当代大语言模型(LLMs)的上下文窗口容量显著提升,但其实际性能在输入上下文数量(K值)增加时迅速达到饱和点。例如,在开放域问答任务中,纳入上下文分块的最佳数量典型值约为10。提高K值虽可增强信息召回率,但不可避免地引入更多低相关性或噪声内容。这些无关信息干扰LLMs的信息处理过程,导致生成答案的准确性与聚焦性下降。因此,存在召回率提升与信息纯度/模型精准度之间的权衡

B.3 创新点

通过对单一大语言模型进行指令调优,使其可以同时进行上下文排序和答案生成,进一步提升LLM在RAG检索和生成阶段排除不相关上下文的能力。

C 模型结构

C.1 指令微调阶段

指令调优(或监督式微调)可以显著提升大语言模型指令遵循的能力,从而提高下游任务的零样本性能。第一阶段的指令调优数据集包括:公共对话数据集、长篇问答数据集、Chain of Thought数据集以及合成数据集。

C.2 排名与生成的总和指令微调阶段
  • 第一阶段的SFT数据:保持LLM遵循指令的能力;
  • 丰富的上下文对话数据:加强LLM利用上下文回答问题的能力,主要包括标准的QA和阅读理解数据集、对话QA数据集;
  • RAG问答/排名数据:增强LLM在生成回答时,对无关上下文的抗干扰能力也非常重要,这里采用的两大数据集,不仅包含标准答案的上下文,还包括通过BM25算法检索出的最相关上下文;
  • 上下文排名数据:利用MS MARCO标准检索数据集(包含查询-正段落对及BM25挖掘的硬负样本),训练LLM判断段落相关性(输出“真/假”)。针对对话问答数据的稀缺,将相关文档分割为150字段落,依据其与标准答案的4-gram召回率判定相关性(>0.5为相关,<0.1为不相关),构建伪相关对。最终混合约50K数据用于指令微调。
C.3 RankRAG推理:检索-重排-生成

(1)检索器在文本库中筛选出 top-n 个相关上下文;

(2)RankRAG 基于提示,评估问题与这些检索到的上下文之间的相关性得分,以此作为生成正确答案的概率,随后对上下文进行重排,精挑细选出 top-k( k 远小于 n )个最为贴切的上下文,作为下一步生成答案的依据;

(3)精选出的 top-k 个上下文与问题串联,再次输入 RankRAG 模型,以此生成最终的答案。

D 实验设计

下面展示了RankRAG与其他基线模型的对比结果,结果表明,RankRAG超越了所有的基线模型,并且各个组件也都有一定的效果。

E 个人总结

(1)本文首次将上下文排序与检索增强生成(RAG)集成于单一LLM框架,替代传统RAG中分离的检索器+生成器流程,并通过指令微调直接训练LLM完成"段落相关性排序"和"答案生成"双任务,提升任务协同性。

(2)LLM内置排序能力可筛除无关段落,减轻噪声干扰(传统RAG的Top-K策略易引入噪声),仅需一个LLM同时处理排序与生成,可以降低部署复杂度(对比级联式RAG系统)。

(3)RankRAG仍存在多目标权衡难题,排序任务(判别式)与生成任务(生成式)的优化目标可能存在内在冲突,需精细设计损失函数平衡二者。同时模型在MS MARCO(简短查询)和合成对话数据上训练,对复杂多轮对话或跨领域任务的泛化性未充分验证。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2406700.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何把工业通信协议转换成http websocket

1.现状 工业通信协议多数工作在边缘设备上&#xff0c;比如&#xff1a;PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发&#xff0c;当设备上用的是modbus从站时&#xff0c;采集设备数据需要开发modbus主站&#xff1b;当设备上用的是西门子PN协议时&#xf…

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…

2025-05-08-deepseek本地化部署

title: 2025-05-08-deepseek 本地化部署 tags: 深度学习 程序开发 2025-05-08-deepseek 本地化部署 参考博客 本地部署 DeepSeek&#xff1a;小白也能轻松搞定&#xff01; 如何给本地部署的 DeepSeek 投喂数据&#xff0c;让他更懂你 [实验目的]&#xff1a;理解系统架构与原…

Tauri2学习笔记

教程地址&#xff1a;https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引&#xff1a;https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多&#xff0c;我按照Tauri1的教程来学习&…

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年&#xff0c;高端封装市场规模为 80 亿美元&#xff0c;预计到 2030 年将超过 280 亿美元&#xff0c;2024-2030 年复合年增长率为 23%。 细分到各个终端市场&#xff0c;最大的高端性能封装市场是“电信和基础设施”&#xff0c;2024 年该市场创造了超过 67% 的收入。…

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…

网页端 js 读取发票里的二维码信息(图片和PDF格式)

起因 为了实现在报销流程中&#xff0c;发票不能重用的限制&#xff0c;发票上传后&#xff0c;希望能读出发票号&#xff0c;并记录发票号已用&#xff0c;下次不再可用于报销。 基于上面的需求&#xff0c;研究了OCR 的方式和读PDF的方式&#xff0c;实际是可行的&#xff…

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注&#xff1a;文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件&#xff1a;STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…