LangChain + LangSmith + DeepSeek 入门实战:构建代码生成助手

news2025/7/30 11:50:39

本文基于 Jupyter Notebook 实践代码,结合 LangChain、LangSmith 和 DeepSeek 大模型,手把手演示如何构建一个代码生成助手,并实现全流程追踪与优化。


一、环境准备与配置

1. 安装依赖

pip install langchain langchain_openai

2. 设置环境变量(Jupyter 中运行)

请注意,LangSmith 不是必需的,但它很有帮助。如果您确实想使用 LangSmith,请在LangSmith注册后,确保设置环境变量以开始记录跟踪。当我们使用 LLM 构建 AI 智能体应用程序时,LangSmith 可以帮助你理解和改进它们。它就像一个仪表板,显示应用程序内部发生的情况。
在这里插入图片描述

# 启用 LangSmith 跟踪
true=True
LANGSMITH_TRACING=true
LANGSMITH_ENDPOINT="https://api.smith.langchain.com"
LANGSMITH_API_KEY="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"
LANGSMITH_PROJECT="pr-untimely-house-95"

# 配置 DeepSeek API
os.environ["DEEPSEEK_API_KEY"] = "sk-e3f022d1746f415c9b0f4bc9a52a4xxx"  # todo 调整为自己的api_key

二、集成 DeepSeek 大模型

1. 初始化模型客户端

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model="deepseek-chat",
    api_key=os.getenv("DEEPSEEK_API_KEY"),
    temperature=0.7,
    max_tokens=512,
    timeout=30,
    max_retries=3,
    base_url="https://api.deepseek.com"
)

# 测试调用
llm.invoke("hello world")

输出示例
在这里插入图片描述


三、构建提示模板系统

1. 定义结构化提示模板

from langchain_core.prompts import ChatPromptTemplate

system_template = "将以下用户输入的信息转化为{language}代码"
prompt_template = ChatPromptTemplate.from_messages(
    [("system", system_template), ("user", "{text}")]
)

在这里插入图片描述
在这里插入图片描述

2. 生成具体提示内容

输出示例

Content: 将以下用户输入的信息转化为python代码
Content: 请帮我写一个冒泡算法

3. 转换为消息格式

prompt.to_messages()

输出示例


四、执行链式调用与结果生成

1. 调用 DeepSeek 生成代码

response = llm.invoke(prompt)
print(response.content)

输出示例(模型生成结果)

在这里插入图片描述


五、LangSmith 全流程监控

1. 自动追踪功能

  • 所有调用链(Prompt → LLM → Output)将自动上传至 LangSmith 仪表板
  • 可查看:
    • 调用树状结构
    • 每个步骤耗时
    • Token 消耗统计
    • 中间输出结果

2. 项目管理

  • 所有运行记录归类到 pr-untimely-house-95 项目
  • 支持版本对比、性能分析和团队协作

完整代码与调试日志已通过 LangSmith 实现全流程追踪,您可以通过 LangSmith 仪表板 查看详细分析报告。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2406243.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Elasticsearch基础】Elasticsearch批量操作(Bulk API)深度解析与实践指南

目录 1 Bulk API概述 1.1 什么是批量操作 1.2 Bulk API的优势 2 Bulk API的工作原理 2.1 请求处理流程 2.2 底层机制 3 Bulk API的使用方法 3.1 基本请求格式 3.2 操作类型示例 3.3 响应格式 4 Bulk API的最佳实践 4.1 批量大小优化 4.2 错误处理策略 4.3 性能调…

MySQL 数据库深度剖析:事务、SQL 优化、索引与 Buffer Pool

在当今数据驱动的时代,数据库作为数据存储与管理的核心,其性能与可靠性至关重要。MySQL 作为一款广泛使用的开源数据库,在众多应用场景中发挥着关键作用。在这篇博客中,我将围绕 MySQL 数据库的核心知识展开,涵盖事务及…

MAZANOKE结合内网穿透技术实现跨地域图像优化服务的远程访问过程

文章目录 前言1. 关于MAZANOKE2. Docker部署3. 简单使用MAZANOKE4. 安装cpolar内网穿透5. 配置公网地址6. 配置固定公网地址总结 前言 在数字世界高速发展的今天,您是否察觉到那些静默增长的视觉数据正在悄然蚕食存储空间?随着影像记录成为日常习惯&…

World-writable config file /etc/mysql/mysql.conf.d/my.cnf is ignored

https://stackoverflow.com/questions/53741107/mysql-in-docker-on-ubuntu-warning-world-writable-config-file-is-ignored 修改权限 -> 重启mysql # 检查字符集配置 SHOW VARIABLES WHERE Variable_name IN (character_set_server, character_set_database ); --------…

信息收集:从图像元数据(隐藏信息收集)到用户身份的揭秘 --- 7000

目录 🌐 访问Web服务 💻 分析源代码 ⬇️ 下载图片并保留元数据 🔍 提取元数据(重点) 👤 生成用户名列表 🛠️ 技术原理 图片元数据(EXIF 数据) Username-Anarch…

如何优雅地绕过限制调用海外AI-API?反向代理与API中转技术详解​

阅读时长​​ | 8分钟 ​​适用读者​​ | 需要跨境调用OpenAI等AI服务的开发者/企业 ​​一、问题背景:为什么需要代理?​​ 最近在技术社区看到这样的求助: "公司服务器在国内,但业务需要调用OpenAI接口,直接访…

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构D 实验设计E 个人总结 A 论文出处 论文题目:FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models发表情况:2023-EMNLP作者单位:浙江大…

React与原生事件:核心差异与性能对比解析

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…

暴雨新专利解决服务器噪音与性能悖论

6月1日,我国首部数据中心绿色化评价方面国家标准《绿色数据中心评价》正式实施,为我国数据中心的绿色低碳建设提供了明确指引。《评价》首次将噪音控制纳入国家级绿色评价体系,要求从设计隔声结构到运维定期监测实现闭环管控,加速…

Go 语言中的内置运算符

1. 算术运算符 注意: (自增)和--(自减)在 Go 语言中是单独的语句,并不是运算符。 package mainimport "fmt"func main() {fmt.Println("103", 103) // 13fmt.Println("10-3…

JS面试常见问题——数据类型篇

这几周在进行系统的复习,这一篇来说一下自己复习的JS数据结构的常见面试题中比较重要的一部分 文章目录 一、JavaScript有哪些数据类型二、数据类型检测的方法1. typeof2. instanceof3. constructor4. Object.prototype.toString.call()5. type null会被判断为Obje…

【靶场】XXE-Lab xxe漏洞

前言 学习xxe漏洞,搭了个XXE-Lab的靶场 一、搭建靶场 现在需要登录,不知道用户名密码,先随便试试抓包 二、判断是否存在xxe漏洞 1.首先登录抓包 看到xml数据解析,由此判断和xxe漏洞有关,但还不确定xxe漏洞是否存在。 2.尝试xxe 漏洞 判断是否存在xxe漏洞 A.send to …

开源项目实战学习之YOLO11:12.6 ultralytics-models-tiny_encoder.py

👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 ultralytics-models-sam 1.sam-modules-tiny_encoder.py2.数据处理流程3.代码架构图(类层次与依赖)blocks.py: 定义模型中的各种模块结构 ,如卷积块、残差块等基础构建…

Python[数据结构及算法 --- 栈]

一.栈的概念 在 Python 中,栈(Stack)是一种 “ 后进先出(LIFO)”的数据结构,仅允许在栈顶进行插入(push)和删除(pop)操作。 二.栈的抽象数据类型 1.抽象数…

Unity VR/MR开发-开发环境准备

视频讲解链接: 【XR马斯维】UnityVR/MR开发环境准备【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili

2025-06-08-深度学习网络介绍(语义分割,实例分割,目标检测)

深度学习网络介绍(语义分割,实例分割,目标检测) 前言 在开始这篇文章之前,我们得首先弄明白,什么是图像分割? 我们知道一个图像只不过是许多像素的集合。图像分割分类是对图像中属于特定类别的像素进行分类的过程,即像素级别的…

【Ragflow】26.RagflowPlus(v0.4.0):完善解析逻辑/文档撰写模式全新升级

概述 在历经半个月的间歇性开发后,RagflowPlus再次迎来一轮升级,正式发布v0.4.0。 开源地址:https://github.com/zstar1003/ragflow-plus 更新方法 下载仓库最新代码: git clone https://github.com/zstar1003/ragflow-plus.…

智能照明系统:具备认知能力的“光神经网络”

智能照明系统是物联网技术与传统照明深度融合的产物,其本质是通过感知环境、解析需求、自主决策的闭环控制,重构光与人、空间、环境的关系。这一系统由智能光源、多维传感器、边缘计算单元及云端管理平台构成,形成具备认知能力的“光神经网络…

SpringSecurity+vue通用权限系统

SpringSecurityvue通用权限系统 采用主流的技术栈实现,Mysql数据库,SpringBoot2Mybatis Plus后端,redis缓存,安全框架 SpringSecurity ,Vue3.2Element Plus实现后台管理。基于JWT技术实现前后端分离。项目开发同时采 …

短视频时长预估算法调研

weighted LR o d d s T p 1 − p ( 1 − p ) o d d s T p ( T p o d d s ∗ p ) o d d s p o d d s T o d d s odds \frac{Tp}{1-p} \newline (1-p)odds Tp \newline (Tp odds * p) odds \newline p \frac{odds}{T odds} \newline odds1−pTp​(1−p)oddsTp(Tpodds…