AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合

news2025/6/7 14:55:37
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。

一、协同过滤:推荐系统的基石与演进

协同过滤(Collaborative Filtering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交互矩阵拆解为低维向量,通过内积预测偏好。但它存在明显局限——仅利用直接交互,忽视用户与商品间潜在的高阶连接关系。

为解决这一问题,学术界开始引入图结构。用户与商品被建模为二部图,一条路径u-i-u-i暗示着“喜欢同一商品的两个用户可能兴趣相似”。2019年的Neural Graph Collaborative Filtering (NGCF) 首次在图神经网络中融入点乘项,显式建模用户-商品关系4。而2020年的LightGCN 通过实验发现:去除传统GCN中的非线性激活和特征变换模块后,性能反而显著提升——这一反直觉的简化设计,成为图推荐模型的里程碑。

场景适配:

  • 中小规模数据:传统矩阵分解仍具性价比优势
  • 稀疏冷启动:引入知识图谱补充协同信号
  • 实时更新:局部图技术(如LGCF)仅提取目标用户子图,避免全图重构6

二、图神经网络:挖掘关系网络的深度价值

图神经网络(GNN)将推荐系统的战场从“点对点匹配”扩展到“全局关系网挖掘”。其核心突破在于通过多层消息传递,捕获用户-商品二部图中的多跳语义。例如,一个三层GNN可汇聚“用户→商品→相似用户→新商品”的路径信息,实现跨节点推理。

但GNN的设计需要精细权衡。2022年的研究揭示:图中过度平滑(oversmoothing)的特征反而损害推荐效果。为此,SIGIR’22提出谱特征重加权机制,筛选对预测真正有效的rough/smooth特征,过滤噪声——如同为数据关系网装上“信号增强器”。

硬件适配性成为工程落地的关键。传统认知中GNN依赖GPU加速,但阿里妈妈实践表明:英特尔第五代至强处理器通过AMX指令集优化矩阵运算,使GNN推理吞吐量提升1.52倍。CPU的通用计算能力在数据预处理、图采样等环节反而展现独特优势。

三、强化学习:动态环境中的决策艺术

当推荐从静态场景转向动态交互,强化学习(RL)的价值凸显。其核心优势在于兼顾即时收益与长期价值——不仅关注点击率,更优化用户留存、复购等指标。

GE-ICF模型是这一方向的代表:它结合深度强化学习框架与GNN传播层,在冷启动场景中将训练效率提升40%。电商平台则将其应用于实时定价策略:通过XGBoost预测用户价格敏感度、库存周转率等因子,动态调整展示价格,准确率达92%。

创新应用场景:

  • 链动激励机制:通过“2+1”双轨激励(2位直属下级+1个出局机制)平衡裂变与合规性
  • 缓存优化:基于DDPG算法的协作缓存策略,降低边缘网络访问延迟
  • 多轮对话推荐:ChatGPT购物助手实现“需求澄清→产品对比→决策引导”的对话式导购

四、效果进化:从实验指标到商业价值

技术迭代的最终检验标准是商业实效:

  • 转化效率:AI智能推荐算法使商品曝光转化率提升4.2倍
  • 用户粘性:京东便利店部署推荐系统后,用户详情页停留时间从47秒增至2分18秒,加购率提升198%
  • 生态协同:S2B2C模式整合供应商-渠道商-消费者数据,某生鲜品牌库存周转从18天压缩至5天

五、未来趋势:融合与场景化

推荐系统的技术边界仍在扩展:

  • 多模态融合:ChatGPT购物推荐已实现跨平台内容抓取,从亚马逊商品页到Reddit评测皆成推荐依据
  • 隐私保护计算:CPU内置SGX/TDX加密技术为推荐数据提供硬件级防护
  • 分布式推理:微软LGCF模型实现“无需全局Embedding,局部图即时预测”

结语:技术选择的关键逻辑

当企业面对推荐技术选型,需警惕“唯新主义”陷阱:

  • 中小平台:协同过滤+知识图谱仍是高性价比选择
  • 动态场景(如游戏、社交):强化学习适配高频交互
  • 超大规模关系网:图神经网络配CPU优化方案实现高效推理

未来商品推荐的终局,或许如阿里妈妈工程师所言:

“我们需要的不是无限高的算力,而是拥有足够算力的超能战士”。

算法、硬件、场景的三角适配,才是推荐引擎持续进化的底层密码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2403026.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

.NET 原生驾驭 AI 新基建实战系列(三):Chroma ── 轻松构建智能应用的向量数据库

在人工智能AI和机器学习ML迅猛发展的今天,数据的存储和检索需求发生了巨大变化。传统的数据库擅长处理结构化数据,但在面对高维向量数据时往往力不从心。向量数据库作为一种新兴技术,专为AI应用设计,能够高效地存储和查询高维向量…

8.RV1126-OPENCV 视频中添加LOGO

一.视频中添加 LOGO 图像大体流程 首先初始化VI,VENC模块并使能,然后创建两个线程:1.把LOGO灰度化,然后获取VI原始数据,其次把VI数据Mat化并创建一个感兴趣区域,最后把LOGO放感兴趣区域里并把数据发送给VENC。2.专门获…

API管理是什么?API自动化测试怎么搭建?

目录 一、API管理是什么 (一)API管理的定义 (二)API管理的重要性 二、API管理的主要内容 (一)API设计 1. 遵循标准规范 2. 考虑可扩展性 3. 保证接口的易用性 (二)API开发 …

GIC v3 v4 虚拟化架构

ARMV8-A架构中包含了对虚拟化的支持。为了与架构保持匹配,GICV3也对虚拟化做了支持。新增了以下特性: 对CPU interface的硬件虚拟化虚拟中断maintenance 中断:用于通知监管程序(例如hypervisor)一些特定的虚拟机事件 …

2025远离Deno和Fresh

原创作者:庄晓立(LIIGO) 原创时间:2025年6月6日 原创链接:https://blog.csdn.net/liigo/article/details/148479884 版权所有,转载请注明出处! 相识 Deno,是Nodejs原开发者Ryan Da…

Flask+LayUI开发手记(七):头像的上传及突破static目录限制

看了看,上篇开发手记是去年8月份写的,到现在差2个月整一年了。停更这么长时间,第一个原因是中间帮朋友忙一个活,那个技术架构是用springboot的,虽然前端也用layUI,但和Flask-python完全不搭界,所…

MiniExcel模板填充Excel导出

目录 1.官方文档 2. 把要导出的数据new一个匿名对象 3.导出 4.注意事项 5.模板制作 6.结果 1.官方文档 https://gitee.com/dotnetchina/MiniExcel/#%E6%A8%A1%E6%9D%BF%E5%A1%AB%E5%85%85-excel // 1. By POCO var value new {Name "Jack",CreateDate n…

MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?

前言 在人工智能技术快速发展的2025年,MCP(Model Context Protocol,模型上下文协议)正逐渐成为AI Agent生态系统的关键基础设施。这一由Anthropic主导的开放协议,旨在解决AI模型与外部工具和数据源之间的连接难题,被业界形象地称…

阿里云事件总线 EventBridge 正式商业化,构建智能化时代的企业级云上事件枢纽

作者:肯梦、稚柳 产品演进历程:在技术浪潮中的成长之路 早在 2018 年,Gartner 评估报告便将事件驱动模型(Event-Driven Model)列为十大战略技术趋势之一,指出事件驱动架构(EDA,Eve…

CentOS8.3+Kubernetes1.32.5+Docker28.2.2高可用集群二进制部署

一、准备工作 1.1 主机列表 HostnameHost IPDocker IPRolek8s31.vm.com192.168.26.3110.26.31.1/24master&worker、etcd、dockerk8s32.vm.com192.168.26.3210.26.32.1/24master&worker、etcd、dockerk8s33.vm.com192.168.26.3310.26.33.1/24master&worker、etcd、…

学习日记-day23-6.6

完成目标: 知识点: 1.IO流_转换流使用 ## 转换流_InputStreamReader1.字节流读取中文在编码一致的情况,也不要边读边看,因为如果字节读不准,读不全,输出的内容有可能会出现乱码 2.所以,我们学了字符流,字符流读取文本文档中的内容如果编码一致,就不会出…

Pytorch安装后 如何快速查看经典的网络模型.py文件(例如Alexnet,VGG)(已解决)

当你用conda 安装好虚拟环境后, 找到你的Anaconda 的安装位置。 我的在D盘下; 然后 从Anaconda3文件夹开始:一级一级的查看,一直到models Anaconda3\envs\openmmlab\Lib\site-packages\torchvision\models 在models下面&#x…

有人-无人(人机)交互记忆、共享心智模型与AI准确率的边际提升

有人-无人(人机)交互记忆、共享心智模型与AI准确率的边际提升是人工智能发展中相互关联且各有侧重的三个方面。人机交互记忆通过记录和理解用户与机器之间的交互历史,增强机器对用户需求的个性化响应能力,从而提升用户体验和协作效…

【OpenGL学习】(五)自定义着色器类

文章目录 【OpenGL学习】&#xff08;五&#xff09;自定义着色器类着色器类插值着色统一着色 【OpenGL学习】&#xff08;五&#xff09;自定义着色器类 项目结构&#xff1a; 着色器类 // shader_s.h #ifndef SHADER_H #define SHADER_H#include <glad/glad.h>#inc…

408第一季 - 数据结构 - 栈与队列的应用

括号匹配 用瞪眼法就可以知道的东西 栈在表达式求值运用 先简单看看就行&#xff0c;题目做了就理解了 AB是操作符,也是被狠狠加入后缀表达式了&#xff0c;然后后面就是*&#xff0c;只要优先级比栈顶运算符牛逼就放里面&#xff0c;很显然&#xff0c;*比牛逼 继续前进&#…

超声波清洗设备的清洗效果如何?

超声波清洗设备是一种常用于清洗各种物体的技术&#xff0c;它通过超声波振荡产生的微小气泡在液体中破裂的过程来产生高能量的冲击波&#xff0c;这些冲击波可以有效地去除表面和细微裂缝中的污垢、油脂、污染物和杂质。超声波清洗设备在多个领域得到广泛应用&#xff0c;包括…

“草台班子”的成长路径分析

一、草台班子的起点&#xff1a;用最小成本验证价值 特点&#xff1a; 团队规模小&#xff08;通常3-5人&#xff09;&#xff0c;成员背景杂&#xff08;可能是程序员产品经理运营的混搭&#xff09;&#xff1b;资源匮乏&#xff08;无资金、无技术中台、无客户积累&#x…

软件测评服务如何依据标准确保品质?涵盖哪些常见内容?

软件测评服务涉及对软件的功能和性能等多维度进行评估和检验&#xff0c;这一过程有助于确保软件的品质&#xff0c;降低故障发生率及维护费用&#xff0c;对于软件开发和维护环节具有至关重要的价值。 测评标准依据 GB/T 25000.51 - 2016是软件测评的核心依据。依照这一标准…

Python打卡第46天

浙大疏锦行 注意力 注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器&#xff0c;就像人类视觉会自动忽略背景&#xff0c;聚焦于图片中的主体&#xff08;如猫、汽车&#xff09;。 从数学角度看&#xff0c;注意力机制是对输入特征进行加权求和&#xff0c;…

Unity优化篇之DrawCall

当然可以&#xff01;以下是完整、详尽、可发布的博客文章&#xff0c;专注讲解 Unity 的静态合批与动态合批机制&#xff0c;并详细列出它们对 Shader 的要求和所有限制条件。文章结构清晰、技术深度足够&#xff0c;适合发布在 CSDN、掘金、知乎等技术平台。 urp默认隐藏动态…