6.RV1126-OPENCV 形态学基础膨胀及腐蚀

news2025/6/6 16:29:27

一.膨胀

1.膨胀原理

        膨胀的本质就是通过微积分的转换,将图像A和图形B进行卷积操作合并成一个A+B图像就是指任意的形状或者大小的图形B。例如下图,将核(也就是图形B)通过微积分卷积,和图像A合并成一个图像A+B。

2.特点

  • 图像就会更加明亮    
  • 图像就会更加粗糙

如下图所示: 

 

 3.膨胀的API

  • 处理图像膨胀的API:void dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor, int iterations, int borderType, const Scalar&borderValue )

第一个参数:src 的类型是 InputArray,它指的是输入图像,它可以是 Mat 类的数据。图像的通道数可以是任意数,但是图像的深度一般是 CV_8U,CV_16U,CV_16S,CV_32F,CV_64F
第二个参数:dst 的类型是 OutputArray,它指的是目标图像(输出图像),值得注意的是输出图像的尺寸、类型要和输入图像是一致的。
第三个参数:InputArray 类型的 kernel,膨胀操作的核(可以理解为输入图形B)。当这个值为 NULL 的时候,表示使用的核参考点默认是 3*3。这个参数通常会配合 getStructingElement 参数的使用(这个参数的使用,下面我会详细说到)。
第四个参数:Point 类型的 anchor,描点的位置,默认是(-1,-1),表示中心位置。
第五个参数:int 类型的迭代次数,默认是 1
第六个参数:int 类型的 borderType,这个类型用于推断图像外部的边界模式,用的最多的是 BORDER_DEFAULT
下面是常用的几种边框模式(这几种相对比较常用,其他的用的很少)
BORDER_CONSTANT:用指定的像素填充边框
BORDER_REPLICATE:用已知的边缘像素来填充边框
BORDER_WRAP:用另一边的像素来补偿填充
BORDER_DEFAULT:默认模式画边框
BORDER_TRANSPANT: 用透明的方式画框
第七个参数:const Scalar 类型的 borderType,一般不用填写,因为这个 API 已经有了默认值 morphologyDefaultBorderValue()

  • 获取核(图形B)的API: CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));

 第一个参数:表示内核的形状(就是图形B是以什么形状放在图像A上的),这里包括了:矩形(MORPH_RECT)、交叉形(MORPH_CROSS)、椭圆形(MORPH_ELLIPSE),常用的内核形状是矩形
第二个参数:内核的尺寸
第三个参数:锚点的位置,默认值 Point(-1,-1),表示的是位于中心点

4. 代码实战:实现图像膨胀功能

(1)功能实现的步骤:imread 读取图片、使用 cvtColor 对图片进行灰度操作、使用 getStructingElement 获取卷积层(也就是获取图形B)、使用 dilate 对图片进行膨胀(将A和B合并)、imwrite 保存图片。流程图如下:

(2)代码如下:

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
    Mat testImage = imread("zjl.jpg");//读取图片

    if(testImage.empty())
    {
        printf("read testImage failed....\n");
    }

    Mat vertical_structure = getStructuringElement(MORPH_CROSS, Size(20,20));//创建一个20*20的十字形结构元素

    dilate(testImage, testImage, vertical_structure);//膨胀操作,testImage为输入图像,testImage为输出图像,vertical_structure为核

    imwrite("zjl1.jpg", testImage);//保存图片
    
    return 0;
}

(3)效果如下:上图是MORPH_CROSS(十字交叉的核),下图是MORPH_RECT(矩形核)效果图。

 二.腐蚀

1.腐蚀原理

        原理和膨胀一样,腐蚀就是膨胀的反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。

2.特点

  • 图像更加细小
  • 黑暗背景部分会更加大

3.腐蚀的API

  •  CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar& borderValue = morphologyDefaultBorderValue() );

第一个参数:src 的类型是 InputArray,它指的是输入图像,它可以是 Mat 类的数据。图像的通道数可以是任意数,但是图像的深度一般是 CV_8U,CV_16U,CV_16S,CV_32F,CV_64F
第二个参数:dst 的类型是 OutputArray,它指的是目标图像(输出图像),值得注意的是输出图像的尺寸、类型要和输入图像是一致的。
第三个参数:InputArray 类型的 kernel,膨胀操作的核。当这个值为 NULL 的时候,表示使用的核参考点默认是 3*3。这个参数通常会配合 getStructingElement 参数的使用(这个参数的使用,下面我会详细说到)。
第四个参数:Point 类型的 anchor,描点的位置,默认是(-1,-1),表示中心位置。
第五个参数:int 类型的迭代次数,默认是 1
第六个参数:int 类型的 borderType,这个类型用于推断图像外部的边界模式,它的默认值是 BORDER_DEFAULT
第七个参数:const Scalar 类型的 borderType,一般不用填写,因为这个 API 已经有了默认值 morphologyDefaultBorderValue()

  •  CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));

第一个参数:表示内核的形状,这里包括了:矩形(MORPH_RECT)、交叉(MORPH_CROSS)、椭圆形(MORPH_ELLIPSE)
第二个参数:内核的尺寸
第三个参数:锚点的位置,默认值 Point(-1,-1),表示的是位于中心点

 4.代码实战:实现图像腐蚀功能

(1)功能实现的步骤:imread 读取图片、使用 cvtColor 对图片进行灰度操作、使用 getStructingElement 获取卷积层(也就是获取图形B)、使用 erode 对图片进行腐蚀、imwrite 保存图片。流程图如下: 

(2)代码如下: 

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
  Mat testImage = imread("zjl.jpg");//读取图片
  if(testImage.empty())
  {
    printf("could not load image.....\n");
    return -1;
  }

  Mat vertical_structure = getStructuringElement(MORPH_RECT, Size(15,15));//获取核图形

  erode(testImage, testImage, vertical_structure);//腐蚀操作

  imwrite("zjl2.jpg", testImage);//保存图片
  
  return 0;
}

(3)效果如下:上图是MORPH_CROSS(十字交叉的核),下图是MORPH_RECT(矩形核)效果图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2401869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

筑牢企业网管域安全防线,守护数字核心——联软网管域安全建设解决方案

在当今数字化浪潮中&#xff0c;企业网管域作为数据中心的核心&#xff0c;其安全防护至关重要。一旦网管域遭受攻击&#xff0c;整个网络系统可能陷入瘫痪&#xff0c;给企业带来巨大损失。联软科技凭借其创新的网管域安全建设解决方案&#xff0c;为企业提供了全方位的安全保…

【目标检测】backbone究竟有何关键作用?

backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合&#xff0c;以满足对不同尺度和类别的目标检测。

一个小小的 flask app, 几个小工具,拼凑一下

1. 起因&#xff0c; 目的: 自己的工具&#xff0c;为自己服务。给大家做参考。项目地址&#xff1a; https://github.com/buxuele/flask_utils 2. 先看效果 3. 过程: 一个有趣的 Flask 工具集&#xff1a;从无到有的开发历程 缘起&#xff1a;为什么要做这个项目&#xff…

对抗性提示:大型语言模型的安全性测试

随着大语言模型&#xff08;LLM&#xff09;在虚拟助手、企业平台等现实场景中的深度应用&#xff0c;其智能化与响应速度不断提升。然而能力增长的同时&#xff0c;风险也在加剧。对抗性提示已成为AI安全领域的核心挑战&#xff0c;它揭示了即使最先进的模型也可能被操纵生成有…

好得睐:以品质守味、以科技筑基,传递便捷与品质

据相关数据显示&#xff0c;超市半成品菜是冻品区增长最快品类&#xff0c;再加上商超渠道作为消费者日常高频接触场景&#xff0c;是促进半成品菜成为冻品生鲜消费领域的关键一环。好得睐作为半成品菜领军品牌&#xff0c;其商超渠道布局是连接消费者与品质生活的重要桥梁。商…

docker-部署Nginx以及Tomcat

一、docker 部署Nginx 1、搜索镜像&#xff08;nginx&#xff09; [rootlocalhost /]# docker search nginx Error response from daemon: Get "https://index.docker.io/v1/search?qnginx&n25": dial tcp 192.133.77.133:443: connect: connection refused 简…

蒙特卡罗模拟: 高级应用的思路和实例

蒙特卡罗模拟不仅仅是一种理论练习&#xff0c;它还是一种强大的工具&#xff0c;在金融、医疗保健、物流等领域都有实际应用。本篇文章将探讨高级和复杂的现实生活场景&#xff0c;深入探讨它们的细微差别&#xff0c;并通过详细的解释在 Python 中实现它们。 什么是蒙特卡罗…

数据分析Agent构建

数据分析agent构建 代码资料来源于 Streamline-Analyst&#xff0c;旨在通过该仓库上的代码了解如何使用大语言模型构建数据分析工具&#xff1b; 个人仓库&#xff1a;Data-Analysis-Agent-Tutorial 不同的在于 Data-Analysis-Agent-Tutorial 是在 Streamline-Analyst 基础…

vscode配置lua

官网下载lua得到如下 打开vscode的扩展下载如下三个 打开vscode的此处设置 搜索 executorMap&#xff0c;并添加如下内容

【笔记】MSYS2 的 MINGW64 环境 全面工具链

#工作记录 MSYS2 的 MINGW64 环境&#xff08;mingw64.exe&#xff09;&#xff0c;下面是为该环境准备的最全工具链安装命令&#xff08;包括 C/C、Python、pip/wheel、GTK3/GTK4、PyGObject、Cairo、SDL2 等&#xff09;。 这一环境适用于构建原生 64 位 Windows 应用程序。…

国内头部的UWB企业介绍之品铂科技

一、核心优势与技术实力‌ ‌厘米级定位精度‌ 自主研发的ABELL无线实时定位系统&#xff0c;在复杂工业环境中实现静态与动态场景下‌10-30厘米‌高精度定位&#xff0c;尤其擅长金属设备密集的化工、电力等场景&#xff0c;抗干扰能力行业领先。‌多技术融合能力‌ 支持卫星…

Prj10--8088单板机C语言8259中断测试(2)

1.测试结果 2.全部代码 #include "tiny_stdarg.h" // 使用自定义可变参数实现#define ADR_273 0x0200 #define ADR_244 0x0400 #define LED_PORT 0x800 #define PC16550_THR 0x1f0 #define PC16550_LSR 0x1f5 / //基本的IO操作函数 / char str[]"Hel…

35.x64汇编写法(二)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 上一个内容&#xff1a;34.x64汇编写法&#xff08;一&#xff09; 上一个内容写了&#xff0c;汇编调…

安全大模型的思考

马上要准备2025年的护网了&#xff0c;最近就一直很忙&#xff0c;被事情裹挟着前进&#xff0c;忙的晕头转向&#xff0c;近乎感冒&#xff0c;昨天部门搞了一场AI大模型培训&#xff0c;演讲者有着很深的技术底蕴&#xff0c;我听到了一句关于Sass数据验证这块大为感悟&#…

NineData云原生智能数据管理平台新功能发布|2025年5月版

本月发布 6 项更新&#xff0c;其中重点发布 3 项、功能优化 3 项。 重点发布 数据库 DevOps - 多源敏感数据保护 敏感数据扫描能力大幅扩展&#xff0c;新增支持 TiDB、Doris、SelectDB、OceanBase MySQL、GreatSQL、StarRocks、ClickHouse、SingleStore、Lindorm 9 种大数据…

Linux可执行文件ELF文件结构

目标文件格式 编译器编译源代码后生成的文件叫做目标文件&#xff0c;而目标文件经过编译器链接之后得到的就是可执行文件。那么目标文件到底是什么&#xff1f;它和可执行文件又有什么区别&#xff1f;链接到底又做了什么呢&#xff1f;接下来&#xff0c;我们将探索一下目标…

DisplayPort 2.0协议介绍(1)

最近开始学习DisplayPort 2.0协议&#xff0c;相比于DP1.4a&#xff0c;最主要的是速率提升到了10Gbps/lane&#xff0c;还有就是128b/132b编码方式的修改。至于速率13.5Gbps和20Gbps还只是可选项&#xff0c;在DP2.1协议才成为必须支持选项。 那在实现技术细节上有哪些变化呢…

I2C通信讲解

I2C总线发展史 怎么在一条串口线上连接多个设备呢&#xff1f; 由于速度同步线是由主机实时发出的&#xff0c;所以主机可以按需求修改通信速度&#xff0c;这样在一条线上可以挂接不同速度的器件&#xff0c;单片机和性能差的器件通信&#xff0c;就输出较慢的脉冲信号&#x…

基于回归算法的心理健康预测(EDA + 预测)

心理健康涵盖情感、心理与社会福祉&#xff0c;影响认知、情绪和行为模式&#xff0c;决定压力应对、人际交往及健康决策&#xff0c;且在生命各阶段&#xff08;从童年至成年&#xff09;均至关重要。心理健康与身体健康同为整体健康的核心要素&#xff1a;抑郁会增加糖尿病、…

【新品解读】一板多能,AXRF49 定义新一代 RFSoC FPGA 开发平台

“硬件系统庞杂、调试周期长” “高频模拟前端不稳定&#xff0c;影响采样精度” “接收和发射链路难以同步&#xff0c;难以扩展更多通道” “数据流量大&#xff0c;处理与存储跟不上” 这些是大部分客户在构建多通道、高频宽的射频采样链路时&#xff0c;面临的主要问题。…