Python打卡训练营Day42

news2025/6/4 0:32:55

DAY 42 Grad-CAM与Hook函数

知识点回顾

  1. 回调函数
  2. lambda函数
  3. hook函数的模块钩子和张量钩子
  4. Grad-CAM的示例

作业:理解下今天的代码即可

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

# 设置随机种子确保结果可复现
# 在深度学习中,随机种子可以让每次运行代码时,模型初始化参数、数据打乱等随机操作保持一致,方便调试和对比实验结果
torch.manual_seed(42)
np.random.seed(42)

# 加载CIFAR-10数据集
# 定义数据预处理步骤,先将图像转换为张量,再进行归一化操作
# 归一化的均值和标准差是(0.5, 0.5, 0.5),这里的均值和标准差是对CIFAR-10数据集的经验值,使得数据分布更有利于模型训练
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载测试集,指定数据集根目录为'./data',设置为测试集(train=False),如果数据不存在则下载(download=True),并应用上述定义的预处理
testset = torchvision.datasets.CIFAR10(
    root='./data', 
    train=False,
    download=True, 
    transform=transform
)

# 定义类别名称,CIFAR-10数据集包含这10个类别
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')

# 定义一个简单的CNN模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        # 第一个卷积层,输入通道为3(彩色图像),输出通道为32,卷积核大小为3x3,填充为1以保持图像尺寸不变
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        # 第二个卷积层,输入通道为32,输出通道为64,卷积核大小为3x3,填充为1
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        # 第三个卷积层,输入通道为64,输出通道为128,卷积核大小为3x3,填充为1
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        # 最大池化层,池化核大小为2x2,步长为2,用于下采样,减少数据量并提取主要特征
        self.pool = nn.MaxPool2d(2, 2)
        # 第一个全连接层,输入特征数为128 * 4 * 4(经过前面卷积和池化后的特征维度),输出为512
        self.fc1 = nn.Linear(128 * 4 * 4, 512)
        # 第二个全连接层,输入为512,输出为10(对应CIFAR-10的10个类别)
        self.fc2 = nn.Linear(512, 10)
        
    def forward(self, x):
        # 第一个卷积层后接ReLU激活函数和最大池化操作,经过池化后图像尺寸变为原来的一半,这里输出尺寸变为16x16
        x = self.pool(F.relu(self.conv1(x)))  
        # 第二个卷积层后接ReLU激活函数和最大池化操作,输出尺寸变为8x8
        x = self.pool(F.relu(self.conv2(x)))  
        # 第三个卷积层后接ReLU激活函数和最大池化操作,输出尺寸变为4x4
        x = self.pool(F.relu(self.conv3(x)))  
        # 将特征图展平为一维向量,以便输入到全连接层
        x = x.view(-1, 128 * 4 * 4)
        # 第一个全连接层后接ReLU激活函数
        x = F.relu(self.fc1(x))
        # 第二个全连接层输出分类结果
        x = self.fc2(x)
        return x

# 初始化模型
model = SimpleCNN()
print("模型已创建")

# 如果有GPU则使用GPU,将模型转移到对应的设备上
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# 训练模型(简化版,实际应用中应该进行完整训练)
def train_model(model, epochs=1):
    # 加载训练集,指定数据集根目录为'./data',设置为训练集(train=True),如果数据不存在则下载(download=True),并应用前面定义的预处理
    trainset = torchvision.datasets.CIFAR10(
        root='./data', 
        train=True,
        download=True, 
        transform=transform
    )
    # 创建数据加载器,设置批量大小为64,打乱数据顺序(shuffle=True),使用2个线程加载数据
    trainloader = torch.utils.data.DataLoader(
        trainset, 
        batch_size=64,
        shuffle=True, 
        num_workers=2
    )
    
    # 定义损失函数为交叉熵损失,用于分类任务
    criterion = nn.CrossEntropyLoss()
    # 定义优化器为Adam,用于更新模型参数,学习率设置为0.001
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # 从数据加载器中获取图像和标签
            inputs, labels = data
            # 将图像和标签转移到对应的设备(GPU或CPU)上
            inputs, labels = inputs.to(device), labels.to(device)
            
            # 清空梯度,避免梯度累加
            optimizer.zero_grad()
            # 模型前向传播得到输出
            outputs = model(inputs)
            # 计算损失
            loss = criterion(outputs, labels)
            # 反向传播计算梯度
            loss.backward()
            # 更新模型参数
            optimizer.step()
            
            running_loss += loss.item()
            if i % 100 == 99:
                # 每100个批次打印一次平均损失
                print(f'[{epoch + 1}, {i + 1}] 损失: {running_loss / 100:.3f}')
                running_loss = 0.0
    
    print("训练完成")

# 训练模型(可选,如果有预训练模型可以加载)
# 取消下面这行的注释来训练模型
# train_model(model, epochs=1)

# 或者尝试加载预训练模型(如果存在)
try:
    # 尝试加载名为'cifar10_cnn.pth'的模型参数
    model.load_state_dict(torch.load('cifar10_cnn.pth'))
    print("已加载预训练模型")
except:
    print("无法加载预训练模型,使用未训练模型或训练新模型")
    # 如果没有预训练模型,可以在这里调用train_model函数
    train_model(model, epochs=1)
    # 保存训练后的模型参数
    torch.save(model.state_dict(), 'cifar10_cnn.pth')

# 设置模型为评估模式,此时模型中的一些操作(如dropout、batchnorm等)会切换到评估状态
model.eval()

# Grad-CAM实现
class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model
        self.target_layer = target_layer
        self.gradients = None
        self.activations = None
        
        # 注册钩子,用于获取目标层的前向传播输出和反向传播梯度
        self.register_hooks()
        
    def register_hooks(self):
        # 前向钩子函数,在目标层前向传播后被调用,保存目标层的输出(激活值)
        def forward_hook(module, input, output):
            self.activations = output.detach()
        
        # 反向钩子函数,在目标层反向传播后被调用,保存目标层的梯度
        def backward_hook(module, grad_input, grad_output):
            self.gradients = grad_output[0].detach()
        
        # 在目标层注册前向钩子和反向钩子
        self.target_layer.register_forward_hook(forward_hook)
        self.target_layer.register_backward_hook(backward_hook)
    
    def generate_cam(self, input_image, target_class=None):
        # 前向传播,得到模型输出
        model_output = self.model(input_image)
        
        if target_class is None:
            # 如果未指定目标类别,则取模型预测概率最大的类别作为目标类别
            target_class = torch.argmax(model_output, dim=1).item()
        
        # 清除模型梯度,避免之前的梯度影响
        self.model.zero_grad()
        
        # 反向传播,构造one-hot向量,使得目标类别对应的梯度为1,其余为0,然后进行反向传播计算梯度
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot)
        
        # 获取之前保存的目标层的梯度和激活值
        gradients = self.gradients
        activations = self.activations
        
        # 对梯度进行全局平均池化,得到每个通道的权重,用于衡量每个通道的重要性
        weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
        
        # 加权激活映射,将权重与激活值相乘并求和,得到类激活映射的初步结果
        cam = torch.sum(weights * activations, dim=1, keepdim=True)
        
        # ReLU激活,只保留对目标类别有正贡献的区域,去除负贡献的影响
        cam = F.relu(cam)
        
        # 调整大小并归一化,将类激活映射调整为与输入图像相同的尺寸(32x32),并归一化到[0, 1]范围
        cam = F.interpolate(cam, size=(32, 32), mode='bilinear', align_corners=False)
        cam = cam - cam.min()
        cam = cam / cam.max() if cam.max() > 0 else cam
        
        return cam.cpu().squeeze().numpy(), target_class

import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
# 选择一个随机图像
# idx = np.random.randint(len(testset))
idx = 102  # 选择测试集中的第101张图片 (索引从0开始)
image, label = testset[idx]
print(f"选择的图像类别: {classes[label]}")

# 转换图像以便可视化
def tensor_to_np(tensor):
    img = tensor.cpu().numpy().transpose(1, 2, 0)
    mean = np.array([0.5, 0.5, 0.5])
    std = np.array([0.5, 0.5, 0.5])
    img = std * img + mean
    img = np.clip(img, 0, 1)
    return img

# 添加批次维度并移动到设备
input_tensor = image.unsqueeze(0).to(device)

# 初始化Grad-CAM(选择最后一个卷积层)
grad_cam = GradCAM(model, model.conv3)

# 生成热力图
heatmap, pred_class = grad_cam.generate_cam(input_tensor)

# 可视化
plt.figure(figsize=(12, 4))

# 原始图像
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f"原始图像: {classes[label]}")
plt.axis('off')

# 热力图
plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f"Grad-CAM热力图: {classes[pred_class]}")
plt.axis('off')

# 叠加的图像
plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title("叠加热力图")
plt.axis('off')

plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()

# print("Grad-CAM可视化完成。已保存为grad_cam_result.png")

浙大疏锦行-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2395326.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于微信小程序的scratch学习系统

博主介绍:java高级开发,从事互联网行业六年,熟悉各种主流语言,精通java、python、php、爬虫、web开发,已经做了六年的毕业设计程序开发,开发过上千套毕业设计程序,没有什么华丽的语言&#xff0…

【C++ 多态】—— 礼器九鼎,釉下乾坤,多态中的 “风水寻龙诀“

欢迎来到一整颗红豆的博客✨,一个关于探索技术的角落,记录学习的点滴📖,分享实用的技巧🛠️,偶尔还有一些奇思妙想💡 本文由一整颗红豆原创✍️,感谢支持❤️!请尊重原创…

SCSAI平台面向对象建模技术的设计与实现

一、核心设计思想 SCSAI平台的核心目标是通过元建模(Meta-Modeling)技术实现面向对象建模的零编码化。其核心思想为: 自反性设计:定义ObjectClassInfo (OCI)为元类(Meta-Class),所有对象类均为…

pikachu通关教程-CSRF

CSRF(get) 用bp进行抓包 选择action value值的修改 点击test in browser copy然后放在bp代理的浏览器上,会出现一个提交按钮,这时候点击之后信息就被修改了。 CSRF(post) 请求的方式不同,其他都是一样 CSRF Token 存在cookie 首先要先下载一…

智能体觉醒:AI开始自己“动手”了-自主进化开启任务革命时代

1. 智能体:AI从“工具”到“伙伴”的关键跃迁 1.1 什么是智能体? 智能体(Agent)是AI的“进化版”——它不再局限于生成文字或图像,而是能像人类一样“规划任务”“调用工具”甚至“协同合作”。例如,一个…

【C++指南】C++ list容器完全解读(二):list模拟实现,底层架构揭秘

. 💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《C指南》 期待您的关注 文章目录 引言一、链表节点设计:双向链表的基石1.1 节点类的实现 二、list框架与核心成员函…

[神经网络]使用olivettiface数据集进行训练并优化,观察对比loss结果

结合归一化和正则化来优化网络模型结构,观察对比loss结果 搭建的神经网络,使用olivettiface数据集进行训练,结合归一化和正则化来优化网络模型结构,观察对比loss结果 from sklearn.datasets import fetch_olivetti_faces #倒入数…

华院计算出席信创论坛,分享AI教育创新实践并与燧原科技共同推出教育一体机

5月21日,信创论坛于上海漕河泾会议中心举办。本次论坛以“聚力融合,繁荣生态”为主题,话题聚焦工业制造、交通运输、金融、教育、医疗等领域。华院计算技术(上海)股份有限公司(以下简称“华院计算”&#x…

华为OD机试真题——会议接待 /代表团坐车(2025A卷:200分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 A卷 200分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 本文收录于专栏:《2025华为OD真题目录+全流程解析/备考攻略/经验分享》 华为OD机试真题《会议…

LabVIEW Val (Sgnl) 属性

在 LabVIEW 事件驱动架构中,Val (Sgnl) 属性(Value (Signaling))是实现编程触发与用户交互行为一致性的关键技术。与普通 Value 属性不同,Val (Sgnl) 在修改控件值的同时强制生成值改变事件,确保程序逻辑与 UI 交互保持…

STM32G4 电机外设篇(三) TIM1 发波 和 ADC COMP DAC级联

目录 一、STM32G4 电机外设篇(三) TIM1 发波 和 ADC COMP DAC级联1 TIM1 高级定时器发波1.1 stm32cubemx配置 2 TIM1 ADC COMP DAC级联2.1 stm32cubemx配置 附学习参考网址欢迎大家有问题评论交流 (* ^ ω ^) 一、STM32G4 电机外设篇(三&…

DAY 35 超大力王爱学Python

知识点回顾: 三种不同的模型可视化方法:推荐torchinfo打印summary权重分布可视化进度条功能:手动和自动写法,让打印结果更加美观推理的写法:评估模式 作业:调整模型定义时的超参数,对比下效果。…

【数据结构】图的存储(十字链表)

弧节点 tailvex数据域:存储弧尾一端顶点在顺序表中的位置下标;headvex 数据域:存储弧头一端顶点在顺序表中的位置下标;hlink 指针域:指向下一个以当前顶点作为弧头的弧;tlink 指针域:指向下一个…

Redis最佳实践——秒杀系统设计详解

基于Redis的高并发秒杀系统设计(十万级QPS) 一、秒杀系统核心挑战 瞬时流量洪峰:100万 QPS请求冲击库存超卖风险:精准扣减防止超卖系统高可用性:99.99%服务可用性要求数据强一致性:库存/订单/支付状态同步…

STM32软件spi和硬件spi

核心观点 本文主要介绍了SPI通信的两种实现方式:软件SPI和硬件SPI。详细阐述了SPI通信协议的基本概念、硬件电路连接方式、移位示意图、时序基本单元以及四种工作模式。同时,对W25Q64模块进行了详细介绍,包括其硬件电路、框图以及操作注意事…

深度刨析树结构(从入门到入土讲解AVL树及红黑树的奥秘)

目录 树的表示 二叉树的概念及结构(重点学习) 概念 : 特点: 树与非树 特殊的二叉树 二叉树的性质(重点) 二叉树的存储结构 堆的概念及结构 建堆方式: 向下调整算法 向上调整算法 建堆第一步初始化 建…

【Linux】shell的条件判断

目录 一.使用逻辑运算符判定命令执行结果 二.条件判断方法 三.判断表达式 3.1文件判断表达式 3.2字符串测试表达式 3.3整数测试表达式 3.4逻辑操作符 一.使用逻辑运算符判定命令执行结果 && 在命令执行后如果没有任何报错时会执行符号后面的动作|| 在命令执行后…

第九天:java注解

注解 1 什么是注解(Annotation) public class Test01 extends Object{//Override重写的注解Overridepublic String toString() {return "Test01{}";} }2 内置注解 2.1 Override Override重写的注解 Override public String toString() {ret…

十一、【核心功能篇】测试用例管理:设计用例新增编辑界面

【核心功能篇】测试用例管理:设计用例新增&编辑界面 前言准备工作第一步:创建测试用例相关的 API 服务 (src/api/testcase.ts)第二步:创建测试用例编辑页面组件 (src/views/testcase/TestCaseEditView.vue)第三步:配置测试用例…

Spring是如何实现属性占位符解析

Spring属性占位符解析 核心实现思路1️⃣ 定义占位符处理器类2️⃣ 处理 BeanDefinition 中的属性3️⃣ 替换具体的占位符4️⃣ 加载配置文件5️⃣ Getter / Setter 方法 源码见:mini-spring 在使用 Spring 框架开发过程中,为了实现配置的灵活性&#xf…