k8s Headless Service

news2025/6/3 12:10:30

Kubernetes 无头服务(Headless Service)配置与使用场景
1.无头服务概述
无头服务(Headless Service)是 Kubernetes 中的一种特殊服务类型,它**不分配集群 IP(ClusterIP),而是直接暴露 Pod 的 DNS 记录。**这使得客户端可以直接访问每个 Pod,而不是通过负载均衡器。
2.无头服务的特点
无 ClusterIP:不分配虚拟 IP,spec.clusterIP 设置为 None。
直接暴露 Pod IP:通过 DNS 解析直接返回 Pod 的 IP 地址。
无负载均衡:客户端直接访问 Pod,不通过负载均衡器。
适用于有状态应用:常与 StatefulSet 配合使用,适用于数据库集群、分布式缓存等场景。

3.创建无头服务
以下是一个无头服务的 YAML 配置示例:

apiVersion: v1
kind: Service
metadata:
  name: my-headless-service
spec:
  selector:
    app: my-app
  ports:
    - port: 80
      targetPort: 80
  clusterIP: None  # 关键设置

此配置中,clusterIP: None 表示这是一个无头服务。
4. 应用场景
分布式系统:如分布式数据库(MySQL、PostgreSQL)、缓存集群(Redis、Elasticsearch)等,客户端可以直接访问每个 Pod。
有状态应用:与 StatefulSet 结合,为每个 Pod 提供稳定的网络标识。
测试和调试:开发者可以直接访问特定 Pod 进行测试。

5.使用示例
以下是一个结合 StatefulSet 的无头服务示例:

apiVersion: v1
kind: Service
metadata:
  name: mysql-headless
spec:
  selector:
    app: mysql
  ports:
    - port: 3306
      targetPort: 3306
  clusterIP: None

此服务允许客户端通过 DNS 直接访问每个 MySQL Pod。
6. 注意事项
DNS 解析:客户端通过 DNS 查询获取 Pod IP,因此 DNS 服务必须可用。
网络策略:可以通过 NetworkPolicy 控制对无头服务的访问。
无头服务为 Kubernetes 中的有状态应用和分布式系统提供了灵活的网络访问方式,通过直接访问 Pod,避免了负载均衡的开销,同时简化了服务发现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394910.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux上安装MongoDB

目录 一、在Linux系统安装MongoDB服务器 1、下载MongoDB 2、上传MongoDB并解压 3、创建必要目录 4、配置环境变量 5、创建配置文件 6、启动命令 7、验证安装 二、在Linux系统安装MongoDB客户端Shell 1、下载MongoDB Shell 2、上传MongoDB Shell并解压 3、配置环境变…

Redis最佳实践——安全与稳定性保障之访问控制详解

Redis 在电商应用的安全与稳定性保障之访问控制全面详解 一、安全访问控制体系架构 1. 多层级防护体系 #mermaid-svg-jpkDj2nKxCq9AXIW {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-jpkDj2nKxCq9AXIW .error-ico…

【华为开发者空间 x DeepSeek】服务器运行Ollama并在本地调用

文章概述 本文介绍了如何在 华为开发者空间 中快速部署并使用 Ollama 模型运行框架,并结合 deepseek-r1 模型进行本地或远程交互推理。内容涵盖环境准备、模型配置、网卡绑定、内网穿透、API调用等多个环节,适合希望在华为云上快速搭建本地类大模型推理…

STM32之IIC(重点)和OLED屏

内部集成电路概述 基本概念 内部集成电路(Inter Integrated Circuit)的简称叫做IIC或者I2C,是一种简单的、半双工同步通信的串行通信接口,IIC总线是上世纪80年代(1982年)由飞利浦公司设计出来&#xff0c…

学习海康VisionMaster之表面缺陷滤波

一:进一步学习了 今天学习下VisionMaster中的表面缺陷滤波:简单、无纹理背景的表面缺陷检测,可以检测表面的异物,缺陷,划伤等 二:开始学习 1:什么表面缺陷滤波? 表面缺陷滤波的核心…

游戏引擎学习第314天:将精灵拆分成多个层

回顾并为今天的工作做准备 我们今天继续昨天开始的工作,现在我们要回到渲染中处理 Z 值的最终环节。我们目前已经有一个我们认为还算合理的排序方式,虽然可能还需要在接下来的过程中进行一些调整,但总体上已经有了一个明确的方向。 我们已经…

【学习笔记】深度学习-梯度概念

一、定义 梯度向量不仅表示函数变化的速度,还表示函数增长最快的方向 二、【问】为什么说它表示方向? 三、【问】那在深度学习梯度下降的时候,还要判断梯度是正是负来更新参数吗? 假设某个参数是 w,损失函数对它的…

【数据结构】图的存储(邻接矩阵与邻接表)

图的存储结构 因为图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边关系即可。 节点保存比较简单,只需要一段连续空间即可,那边关系该怎么保存呢&#xff1…

tomcat yum安装

使用yum安装 yum install -y java-1.7.0-openjdk* tomcat* --disablerepoepel## java-1.7.0-openjdk* 注意:最终安装的是java-1.8.0版本## --disablerepoepel 禁用:EPEL源,防止版本冲突 java -version (2) 启停:Tomcat 7 s…

从翻译后修饰角度解析人工合成途径与底盘细胞的适配性-文献精读136

Compatibility between synthetic pathway and chassis cells from the viewpoint of post-translational modifications 从翻译后修饰角度解析人工合成途径与底盘细胞的适配性 摘要 揭示工程化设计的人工合成途径与底盘细胞整体代谢网络的交互作用及适配性机制是合成生物学研…

Cesium快速入门到精通系列教程一

一、打造第一个Cesium应用 1、官方渠道下载Cesium(可选择历史版本) ​​GitHub Releases页面​​ 访问 Cesium GitHub Releases,此处列出了所有正式发布的版本。 通过标签(如 v1.95.0)选择目标版本,下载…

[Windows] 剪映 视频编辑处理

附链接:夸克网盘分享(点击蓝色字体自行保存下载)

决策树 GBDT XGBoost LightGBM

一、决策树 1. 决策树有一个很强的假设: 信息是可分的,否则无法进行特征分支 2. 决策树的种类: 2. ID3决策树: ID3决策树的数划分标准是信息增益: 信息增益衡量的是通过某个特征进行数据划分前后熵的变化量。但是&…

stm32 / arduino TPL0401A使用教程

这是在给英国的一个学生讲课时用到的一个芯片,做一个dcdc的反馈电路,刚开始用的不是这个,后来发现国内这个芯片用的挺成熟,就选择了这个。 芯片说明 首先我买的是TPL0401A,我发现淘宝上卖的都是A,其实想用C&#xff0…

数据结构与算法之单链表面试题(新浪、百度、腾讯)

单链表面试题(新浪、百度、腾讯) 求单链表中的有效节点的个数 public int getCount(HeroNode head) {Hero1 cur head.getNext();int count 0;while(cur ! null) {count;cur cur.getNext();}return count;}查找单链表中的倒数第k个结点【新浪面试题】…

单板机8088C语言计划

计划将原来用汇编写的小程序,用C语言重新写一遍 计划2个月能完成 然后再试试,能不能用C写一下固件BootLoad 和一个类似Dos时代的Debug调试器

一周学会Pandas2之Python数据处理与分析-数据重塑与透视-pivot() - 透视 (长 -> 宽,有限制)

锋哥原创的Pandas2 Python数据处理与分析 视频教程: 2025版 Pandas2 Python数据处理与分析 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili pivot() 是 pandas 中用于数据重塑的核心方法,它将长格式数据转换为宽格式数据,与 melt() 方…

机器学习中无监督学习方法的聚类:划分式聚类、层次聚类、密度聚类

1.定义和特点 2.划分式聚类:K-Means 、 K-Medoids 3.层次聚类:树状图 4.密度聚类:DBSCAN 5.聚类的应用 一、定义和特点 机器学习中的无监督学习聚类是一种通过数据内在结构将样本分组的技术,无需预先标注的类别标签。 它的核心目…

【HW系列】—溯源与定位—Linux入侵排查

文章目录 一、Linux入侵排查1.账户安全2.特权用户排查(UID0)3.查看历史命令4.异常端口与进程端口排查进程排查 二、溯源分析1. 威胁情报(Threat Intelligence)2. IP定位(IP Geolocation)3. 端口扫描&#x…

CPO-BP+MOPSO,冠豪猪优化BP神经网络+多目标粒子群算法!(Matlab源码)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.CPO-BPNSGA,冠豪猪优化BP神经网络粒子群算法!(Matlab完整源码和数据),冠豪猪算法优化BP神经网络的权值和阈值,运行环境Matlab2020b及以上。 多…