android 媒体框架之MediaCodec

news2025/6/3 10:07:30

一、MediaCodec 整体架构与设计思想

MediaCodec 是 Android 底层多媒体框架的核心组件,负责高效处理音视频编解码任务。其架构采用 生产者-消费者模型,通过双缓冲区队列(输入/输出)实现异步数据处理:

  • 输入缓冲区队列:存放待编码/解码的原始数据(如 YUV 视频帧或 PCM 音频)。
  • 输出缓冲区队列:存储处理后的数据(如 H.264 流或解码后的原始帧)。
  • 硬件加速支持:优先调用设备专属编解码器(如高通 DSP),显著降低 CPU 负载。

二、核心组件与关键 API 详解

1. 编解码器实例(MediaCodec)
  • 创建方式
    // 创建解码器(H.264 示例)
    MediaCodec decoder = MediaCodec.createDecoderByType("video/avc");
    // 创建编码器(AAC 音频示例)
    MediaCodec encoder = MediaCodec.createEncoderByType("audio/mp4a-latm");
    
    支持通过 MIME 类型(如 video/avc)或硬件编解码器名称创建。
2. 缓冲区管理
  • 输入缓冲区
    • dequeueInputBuffer(timeoutUs):获取空闲缓冲区索引。
    • getInputBuffer(index):通过索引获取 ByteBuffer 对象填充数据。
    • queueInputBuffer(...):提交数据给编解码器处理。
  • 输出缓冲区
    • dequeueOutputBuffer(BufferInfo, timeoutUs):获取处理完成的缓冲区索引及元数据。
    • getOutputBuffer(index):读取编解码后数据。
    • releaseOutputBuffer(index, render):释放缓冲区(若为视频,render=true 可触发渲染)。
3. 配置与状态控制
  • 配置参数(MediaFormat)
    MediaFormat format = MediaFormat.createVideoFormat("video/avc", width, height);
    format.setInteger(MediaFormat.KEY_BIT_RATE, 5000000);  // 码率
    format.setInteger(MediaFormat.KEY_FRAME_RATE, 30);     // 帧率
    format.setInteger(KEY_COLOR_FORMAT, COLOR_FormatYUV420Flexible); // 颜色空间
    codec.configure(format, surface, null, 0); // surface 用于视频渲染
    
  • 生命周期控制
    • start() → 进入运行状态(Running)。
    • stop() → 回到未初始化状态(Uninitialized)。
    • release() → 释放资源。

三、核心类 MediaCodec.BufferInfo 深度解析

BufferInfo 是描述输出缓冲区元数据的关键类,包含以下字段:

字段类型作用
offsetint有效数据在缓冲区中的起始偏移(字节)。通常为 0,表示从缓冲区头部开始读取。
sizeint有效数据长度(字节)。若为 0 且含 BUFFER_FLAG_END_OF_STREAM,表示流结束。
presentationTimeUslong呈现时间戳(微秒),用于音视频同步(如视频帧的渲染时机)。
flagsint缓冲区标志位(位掩码),关键值包括:
(0) : B or P 帧
- BUFFER_FLAG_KEY_FRAME(1):关键帧(I帧)。
- BUFFER_FLAG_END_OF_STREAM(4):流结束标记(EOS)。
- BUFFER_FLAG_CODEC_CONFIG(2):编解码配置数据(如 SPS/PPS)。

典型使用场景

MediaCodec.BufferInfo bufferInfo = new MediaCodec.BufferInfo();
int outputIndex = codec.dequeueOutputBuffer(bufferInfo, timeoutUs);
if (outputIndex >= 0) {
    ByteBuffer outputBuffer = codec.getOutputBuffer(outputIndex);
    byte[] data = new byte[bufferInfo.size];
    outputBuffer.position(bufferInfo.offset);
    outputBuffer.get(data, 0, bufferInfo.size);
    
    // 关键帧处理
    if ((bufferInfo.flags & MediaCodec.BUFFER_FLAG_KEY_FRAME) != 0) {
        saveKeyFrame(data); // 存储关键帧用于错误恢复
    }
    codec.releaseOutputBuffer(outputIndex, true);
}

四、工作流程与状态机

请添加图片描述

  • 关键状态
    • Flushed:启动后初始状态,缓冲区为空。
    • Running:持续处理数据(90% 时间处于此状态)。
    • End-of-Stream:输入流结束,等待输出剩余数据。

五、注意

  1. 同步 vs 异步模式

    • 同步模式:简单但易阻塞主线程,适合低复杂度场景。
    • 异步模式:通过 setCallback() 监听事件,高效但需处理线程安全。
  2. 缓冲区复用:避免频繁申请内存,提升性能(尤其高清视频)。

  3. 设备兼容性

    • 使用 MediaCodecList 检查编解码器支持情况。
    • 某些设备对 COLOR_FORMAT 支持有限,需动态适配。
  4. MediaCodec 通过双缓冲区队列状态机控制实现高效编解码,核心在于:
    缓冲区管理:dequeueInputBuffer/queueInputBufferdequeueOutputBuffer/releaseOutputBuffer 的配对使用。

  5. 元数据解析:BufferInfoflagspresentationTimeUs 是同步与错误恢复的关键。

  6. 硬件加速:优先选择设备专属编解码器(如 OMX.qcom. 前缀)以优化性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394861.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

堆与堆排序及 Top-K 问题解析:从原理到实践

一、堆的本质与核心特性 堆是一种基于完全二叉树的数据结构,其核心特性为父节点与子节点的数值关系,分为大堆和小堆两类: 大堆:每个父节点的值均大于或等于其子节点的值,堆顶元素为最大值。如: 小堆:每个…

软件锁:守护隐私,安心无忧

数字化时代,手机已成为我们生活中不可或缺的一部分,它不仅存储着我们的个人信息、照片、聊天记录等重要数据,还承载着我们的社交、娱乐和工作等多种功能。然而,这也意味着手机上的隐私信息面临着诸多泄露风险。无论是家人、朋友还…

无人机桥梁3D建模、巡检、检测的航线规划

无人机桥梁3D建模、巡检、检测的航线规划 无人机在3D建模、巡检和检测任务中的航线规划存在显著差异,主要体现在飞行高度、航线模式、精度要求和传感器配置等方面。以下是三者的详细对比分析: 1. 核心目标差异 任务类型主要目标典型应用场景3D建模 生成…

【Java基础05】面向对象01

文章目录 1. 设计对象并使用1.1 类与对象1.2 封装1.2.1 private关键字1.2.2 this关键字成员变量和局部变量的区别 1.2.3 构造方法1.2.4 标准JavaBean类 1.3 对象内存图 本文部分参考这篇博客 1. 设计对象并使用 1.1 类与对象 public class 类名{1、成员变量(代表属性,一般是名…

设计模式:观察者模式 - 实战

一、观察者模式场景 1.1 什么是观察者模式? 观察者模式(Observer Pattern)观察者模式是一种行为型设计模式,用于定义一种一对多的依赖关系,当对象的状态发生变化时,所有依赖于它的对象都会自动收到通知并更…

YOLOv8 移动端升级:借助 GhostNetv2 主干网络,实现高效特征提取

文章目录 引言GhostNetv2概述GhostNet回顾GhostNetv2创新 YOLOv8主干网络改进原YOLOv8主干分析GhostNetv2主干替换方案整体架构设计关键模块实现 完整主干网络实现YOLOv8集成与训练模型集成训练技巧 性能对比与分析计算复杂度对比优势分析 部署优化建议结论与展望 引言 目标检…

国产化Word处理控件Spire.Doc教程:在 C# 中打印 Word 文档终极指南

在 C# 中以编程方式打印 Word 文档可以简化业务工作流程、自动化报告和增强文档管理系统。本指南全面探讨如何使用Spire.Doc for .NET打印 Word 文档,涵盖从基本打印到高级自定义技术的所有内容。我们将逐步介绍每种情况下的实际代码示例,确保您能够在实…

谷歌:贝叶斯框架优化LLM推理反思

📖标题:Beyond Markovian: Reflective Exploration via Bayes-Adaptive RL for LLM Reasoning 🌐来源:arXiv, 2505.20561 🌟摘要 通过强化学习 (RL) 训练的大型语言模型 (LLM) 表现出强大的推理能力和紧急反射行为&a…

Qt SQL模块基础

Qt SQL模块基础 一、Qt SQL模块支持的数据库 官方帮助文档中的Qt支持的数据库驱动如下图: Qt SQL 模块中提供了一些常见的数据库驱动,包括网络型数据库,如Qracle、MS SQL Server、MySQL等,也包括简单的单机型数据库。 Qt SQL支…

[9-3] 串口发送串口发送+接收 江协科技学习笔记(26个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26中断

如何在Qt中绘制一个带有动画的弧形进度条?

如何在Qt中绘制一个弧形的进度条 在图形用户界面开发中,进度指示控件(Progress Widget)是非常常见且实用的组件。CCArcProgressWidget 是一个继承自 QWidget 的自定义控件,用于绘制圆弧形进度条。当然,笔者看了眼公开…

国产三维CAD皇冠CAD(CrownCAD)建模教程:汽车电池

在线解读『汽车电池』的三维建模流程,讲解3D草图、保存实体、拉伸凸台/基体、设置外观等操作技巧,一起和皇冠CAD(CrownCAD)学习制作步骤吧! 汽车电池(通常指铅酸蓄电池或锂离子电池)是车辆电气系…

VMware-workstation安装教程--超详细(附带安装包)附带安装CentOS系统教程

VMware-workstation安装教程--超详细(附带安装包)附带安装CentOS系统教程 一、下载软件VMwware二、下载需要的镜像三、在VMware上安装系统 一、下载软件VMwware 二、下载需要的镜像 三、在VMware上安装系统 VMware 被 Broadcom(博通&#x…

2025年- H63-Lc171--33.搜索旋转排序数组(2次二分查找,需二刷)--Java版

1.题目描述 2.思路 输入:旋转后的数组 nums,和一个整数 target 输出:target 在 nums 中的下标,如果不存在,返回 -1 限制:时间复杂度为 O(log n),所以不能用遍历,必须使用 二分查找…

3D-激光SLAM笔记

目录 定位方案 编译tbb ros2humble安装 命令 colcon commond not found 栅格地图生成: evo画轨迹曲线 安装gtsam4.0.2 安装ceres-solver1.14.0 定位方案 1 方案一:改动最多 fasterlio 建图,加闭环优化,参考fast-lio增加关…

HomeKit 基本理解

概括 HomeKit 将用户的家庭自动化信息存储在数据库中,该数据库由苹果的内置iOS家庭应用程序、支持HomeKit的应用程序和其他开发人员的应用程序共享。所有这些应用程序都使用HomeKit框架作为对等程序访问数据库. Home 只是相当于 HomeKit 的表现层,其他应用在实现 …

(LeetCode 每日一题) 909. 蛇梯棋 (广度优先搜索bfs)

题目&#xff1a;909. 蛇梯棋 思路&#xff1a;广度优先搜索bfs队列&#xff0c;时间复杂度0(6*n^2)。 细节看注释 C版本&#xff1a; class Solution { public:int snakesAndLadders(vector<vector<int>>& board) {int nboard.size();// vis[i]&#xff1a;…

生成https 证书步骤

一、OpenSSL下载 OpenSSL下载地址&#xff1a; https://slproweb.com/products/Win32OpenSSL.html 如果电脑是64位的就选择64位的 二、OpenSSL安装 双击打开.exe文件 开始安装&#xff0c;一直下一步&#xff0c;不过需要注意的是默认安装路径是C盘&#xff0c;可更改到其他盘…

设计模式——适配器设计模式(结构型)

摘要 本文详细介绍了适配器设计模式&#xff0c;包括其定义、核心思想、角色、结构、实现方式、适用场景及实战示例。适配器模式是一种结构型设计模式&#xff0c;通过将一个类的接口转换成客户端期望的另一个接口&#xff0c;解决接口不兼容问题&#xff0c;提高系统灵活性和…

小黑大语言模型通过设计demo进行应用探索:langchain中chain的简单理解demo

chain简介 LangChain 中的 Chain 模块‌在开发大型语言模型&#xff08;LLM&#xff09;驱动的应用程序中起着至关重要的作用。Chain是串联LLM能力与实际业务的关键桥梁&#xff0c;通过将多个工具和模块按逻辑串联起来&#xff0c;实现复杂任务的多步骤流程编排。 案例 通过…