回归任务损失函数对比曲线

news2025/6/3 9:10:55

回归任务损失函数曲线可视化对比

本节将可视化对比均方误差(MSE)、平均绝对误差(MAE)、Huber损失函数三种常见回归任务损失函数的曲线,帮助理解它们在不同误差区间的表现差异。

1. 导入所需库

我们需要用到 numpy 进行数值计算,matplotlib 进行绘图。

import numpy as np
import matplotlib.pyplot as plt

2. 定义损失函数(MSE、MAE、Huber)

分别实现均方误差(MSE)、平均绝对误差(MAE)和Huber损失的Python函数。

def mse_loss(x):
    """均方误差"""
    return x ** 2

def mae_loss(x):
    """平均绝对误差"""
    return np.abs(x)

def huber_loss(x, delta=1.0): #delta阈值,控制损失函数从二次到线性切换的位置,常用1.0
    """Huber损失"""
    return np.where(np.abs(x) <= delta,
                    0.5 * x ** 2,
                    delta * (np.abs(x) - 0.5 * delta))

3. 生成误差数据

生成一组对称分布的误差(如-5到5),用于损失函数的输入。

# 生成误差区间
errors = np.linspace(-5, 5, 200)

4. 计算各损失函数的取值

对每个误差值,分别计算MSE、MAE和Huber损失的结果。

mse_values = mse_loss(errors)
mae_values = mae_loss(errors)
huber_values = huber_loss(errors, delta=1.0) #delta设置为1.0是为了与其他损失函数对比

5. 绘制损失函数对比曲线

使用matplotlib将三种损失函数的曲线绘制在同一张图上,便于直观对比。

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei', 'Arial Unicode MS', 'Microsoft YaHei', 'PingFang SC']  # 支持中文
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号
plt.figure(figsize=(8, 5))
plt.plot(errors, mse_values, label='MSE (L2)', color='blue')
plt.plot(errors, mae_values, label='MAE (L1)', color='green')
plt.plot(errors, huber_values, label='Huber (δ=1.0)', color='red')
plt.xlabel('误差 (error)')
plt.ylabel('损失值 (loss)')
plt.title('MSE、MAE、Huber损失函数曲线对比')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

总结

  • MSE 对大误差更敏感,曲线在远离0时增长更快。
  • MAE 对所有误差线性增长,对异常值不敏感,但在0点不可导。
  • Huber损失 在误差较小时与MSE一致,误差较大时与MAE一致,兼具二者优点,常用于鲁棒回归任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394658.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Magentic-UI:人机协作的网页自动化革命

Magentic-UI是微软开源的一款创新浏览器自动化工具&#xff0c;基于多智能体系统和AutoGen框架设计&#xff0c;强调人机协作、透明性和安全控制&#xff0c;通过协作规划、实时执行和计划学习机制&#xff0c;高效处理复杂网页任务如数据抓取和表单填写&#xff0c;显著提升任…

计算机专业大学生常用的刷题,资源网站(持续更新)

一、刷题网站 1.牛客网 牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推&#xff0c;求职就业一站解决_牛客网 (nowcoder.com)https://www.nowcoder.com/ 牛客网&#xff08;Nowcoder&#xff09;是中国一个主要面向编程和技术学习者的在线教育和职业发展平台。它提供了…

Redisson学习专栏(二):核心功能深入学习(分布式锁,分布式集合,原子操作与计数器,事件与监听)

本文是“Redisson学习专栏”第二篇&#xff0c;聚焦其核心分布式功能实现原理与最佳实践 文章目录 前言&#xff1a;分布式系统核心能力实践一、分布式锁&#xff1a;高并发下的守卫者1.1 可重入锁 (Reentrant Lock)1.2 公平锁 (Fair Lock)1.3 联锁 (MultiLock)1.4 红锁 (RedLo…

医疗多模态共情推理与学习一体化网络构成初探

1 引言:多模态共情推理的概念内涵与技术背景 在当今医疗人工智能领域,多模态共情推理正逐步成为突破临床决策支持系统瓶颈的关键范式。这一技术通过融合认知共情与情感共情的双重机制,模拟人类医生的综合诊断思维过程,实现对患者全方位健康状态的深度理解。医疗环境中的共…

MySQL : MySQL的安装【CentOS 7】

MySQL : MySQL的安装【CentOS 7】 (一) MySQL的卸载和安装1.卸载查看是否存在MySQL删掉原有的MySQL 2.安装 &#xff08;二&#xff09;登录和环境配置登录方法一: 存在临时密码登录方法二:通过修改配置文件环境配置 (一) MySQL的卸载和安装 安装与卸载中&#xff0c;用户全部…

EasyRTC嵌入式音视频实时通话SDK助力AI与IoT智能硬件打造音视频交互多场景应用

一、引言​ 在数字化浪潮下&#xff0c;AI与IoT深度融合重塑智能硬件产业。实时音视频通信是智能硬件交互的核心&#xff0c;其性能关乎用户体验与场景拓展。EasyRTC嵌入式音视频实时通话SDK基于WebRTC技术&#xff0c;以轻量、易扩展的特性&#xff0c;为AI与IoT智能硬件融合…

Unity数字人开发笔记——讯飞超拟人语音

基于上一篇&#xff1a; https://blog.csdn.net/qq_17523181/article/details/148255809?spm1001.2014.3001.5501 https://blog.csdn.net/qq_17523181/article/details/148264127?spm1011.2415.3001.5331 讯飞默认的语音非常机械&#xff0c;更换为讯飞的超拟人语音 一、讯飞…

C# 文件 I/O 操作详解:从基础到高级应用

在软件开发中&#xff0c;文件操作&#xff08;I/O&#xff09;是一项基本且重要的功能。无论是读取配置文件、存储用户数据&#xff0c;还是处理日志文件&#xff0c;C# 都提供了丰富的 API 来高效地进行文件读写操作。本文将全面介绍 C# 中的文件 I/O 操作&#xff0c;涵盖基…

Visual Studio笔记:MSVC工具集、MSBuild

1. MSVC工具集 1.1 什么叫MSVC工具集 也可以说Visual Studio平台工具集&#xff08;Platform toolset&#xff09;. 这些工具包括 C/C 编译器、链接器、汇编程序和其他生成工具以及匹配的库和头文件。 Visual Studio 2015、Visual Studio 2017 和 Visual Studio 2019 是二进制…

高端制造行业 VMware 替代案例合集:10+ 头部新能源、汽车、半导体制造商以国产虚拟化支持 MES、PLM 等核心应用系统

在“中国制造 2025”政策的推动下&#xff0c;国内的新能源、汽车制造、半导体、高端装备等高端制造产业迎来了蓬勃发展&#xff0c;成为全球制造业版图中举足轻重的力量。订单数量的激增与国产化转型的趋势&#xff0c;也为高端制造企业的 IT 基础设施带来了新的挑战&#xff…

【b站计算机拓荒者】【2025】微信小程序开发教程 - chapter3 项目实践 - 3人脸识别采集统计人脸检测语音识别

https://www.bilibili.com/video/BV1WgQdYNERe/?p87&spm_id_from333.788.top_right_bar_window_history.content.click&vd_sourcec919d6976fd77ac77f9860cf2e7e0e11 1 人脸识别 # 1 采集完-人脸图片好上传到百度人脸识别-后期使用百度进行人脸识别-保存、删除等-后期…

杆塔倾斜在线监测装置:电力设施安全运行的“数字守卫”

在输电线路、通信基站及风电设施等场景中&#xff0c;杆塔作为支撑核心设备的基础结构&#xff0c;其稳定性直接关系到能源传输与信息通信的安全。传统人工巡检方式存在效率低、响应滞后等局限&#xff0c;而杆塔倾斜在线监测装置通过技术赋能&#xff0c;实现了对杆塔状态的实…

C++23 新成员函数与字符串类型的改动

文章目录 引言std::basic_string::contains 与 std::basic_string_view::contains (P1679R3)功能介绍示例代码优势 禁止从 nullptr 构造 std::basic_string 和 std::basic_string_view (P2166R1)背景改动影响 std::basic_string_view 的显式范围构造函数 (P1989R2)功能介绍示例…

threejs渲染器和前端UI界面

1. three.js Canvas画布布局 学习本节课之前&#xff0c;可以先回顾下第一章节入门部分的6和12两小节关于threejs Canvas画布布局的讲解。 网页上局部特定尺寸&#xff1a;1.6 第一个3D案例—渲染器(opens new window) 全屏&#xff0c;随窗口变化:1.12 Canvas画布布局和全屏…

AI笔记 - 网络模型 - mobileNet

网络模型 mobileNet mobileNet V1网络结构深度可分离卷积空间可分![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/aff06377feac40b787cfc882be7c6e5d.png) 参考 mobileNet V1 网络结构 MobileNetV1可以理解为VGG中的标准卷积层换成深度可分离卷积 可分离卷积主要有…

day12 leetcode-hot100-20(矩阵3)

48. 旋转图像 - 力扣&#xff08;LeetCode&#xff09; 1.辅助数组法&#xff08;题目不让&#xff09; 思路&#xff1a;很简单&#xff0c;新建一个二维数组&#xff0c;直接找新数组与旧数组的规律即可。比如这个旋转90。那就是相当于 new[col][n-row-1]old[row][col],然后…

【Java开发日记】基于 Spring Cloud 的微服务架构分析

目录 1、Spring Cloud 2、Spring Cloud 的核心组件 1. Eureka&#xff08;注册中心&#xff09; 2. Zuul&#xff08;服务网关&#xff09; 3. Ribbon&#xff08;负载均衡&#xff09; 4. Hystrix&#xff08;熔断保护器&#xff09; 5. Feign&#xff08;REST转换器&a…

AWTK 嵌入式Linux平台实现多点触控缩放旋转以及触点丢点问题解决

前言 最近涉及海图的功能交互&#xff0c;多点触摸又开始找麻烦。 在PC/Web平台awtk是通过底层的sdl2库来实现多点触摸&#xff0c;但是在嵌入式Linux平台&#xff0c;可能是考虑到性能原因&#xff0c;awtk并没有采用sdl库来做事件处理&#xff0c;而是自己实现一个awtk-lin…

尚硅谷redis7 93-97 springboot整合reids之总体概述

93 springboot整合reids之总体概述 总体概述 jedis-lettuce-RedisTemplate三者的联系 名称类型作用描述和其它的关系JedisRedis 客户端早期主流的 Java Redis 客户端&#xff0c;基于阻塞 I/O&#xff0c;同步操作可作为 RedisTemplate 的底层连接实现LettuceRedis 客户端基…

声纹技术体系:从理论基础到工程实践的完整技术架构

文章目录 一、声纹技术的理论基础与概念内核1.1 声纹的生物学本质与数学表征1.2 特征提取的理论基础与实现机制 二、声纹识别技术的演进逻辑与方法体系2.1 传统统计学方法的理论架构2.2 深度学习方法的技术革新2.3 损失函数的设计原理与优化策略 三、声纹识别系统的架构设计与模…