Python打卡训练营学习记录Day41

news2025/6/3 1:05:39

DAY 41 简单CNN

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
 
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
 
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
 
# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
    # 随机裁剪图像,从原图中随机截取32x32大小的区域
    transforms.RandomCrop(32, padding=4),
    # 随机水平翻转图像(概率0.5)
    transforms.RandomHorizontalFlip(),
    # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    # 随机旋转图像(最大角度15度)
    transforms.RandomRotation(15),
    # 将PIL图像或numpy数组转换为张量
    transforms.ToTensor(),
    # 标准化处理:每个通道的均值和标准差,使数据分布更合理
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
 
# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
 
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform  # 使用增强后的预处理
)
 
test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform  # 测试集不使用增强
)
 
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()  # 继承父类初始化
        
        # ---------------------- 第一个卷积块 ----------------------
        # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素
        self.conv1 = nn.Conv2d(
            in_channels=3,       # 输入通道数(图像的RGB通道)
            out_channels=32,     # 输出通道数(生成32个新特征图)
            kernel_size=3,       # 卷积核尺寸(3x3像素)
            padding=1            # 边缘填充1像素,保持输出尺寸与输入相同
        )
        # 批量归一化层:对32个输出通道进行归一化,加速训练
        self.bn1 = nn.BatchNorm2d(num_features=32)
        # ReLU激活函数:引入非线性,公式:max(0, x)
        self.relu1 = nn.ReLU()
        # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size
        
        # ---------------------- 第二个卷积块 ----------------------
        # 卷积层2:输入32通道(来自conv1的输出),输出64通道
        self.conv2 = nn.Conv2d(
            in_channels=32,      # 输入通道数(前一层的输出通道数)
            out_channels=64,     # 输出通道数(特征图数量翻倍)
            kernel_size=3,       # 卷积核尺寸不变
            padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后)
        )
        self.bn2 = nn.BatchNorm2d(num_features=64)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8
        
        # ---------------------- 第三个卷积块 ----------------------
        # 卷积层3:输入64通道,输出128通道
        self.conv3 = nn.Conv2d(
            in_channels=64,      # 输入通道数(前一层的输出通道数)
            out_channels=128,    # 输出通道数(特征图数量再次翻倍)
            kernel_size=3,
            padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后)
        )
        self.bn3 = nn.BatchNorm2d(num_features=128)
        self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)
        self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4
        
        # ---------------------- 全连接层(分类器) ----------------------
        # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维
        self.fc1 = nn.Linear(
            in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)
            out_features=512          # 输出维度(隐藏层神经元数)
        )
        # Dropout层:训练时随机丢弃50%神经元,防止过拟合
        self.dropout = nn.Dropout(p=0.5)
        # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)
        self.fc2 = nn.Linear(in_features=512, out_features=10)
 
    def forward(self, x):
        # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)
        
        # ---------- 卷积块1处理 ----------
        x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)
        x = self.bn1(x)         # 批量归一化,不改变尺寸
        x = self.relu1(x)       # 激活函数,不改变尺寸
        x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)
        
        # ---------- 卷积块2处理 ----------
        x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]
        
        # ---------- 卷积块3处理 ----------
        x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)
        x = self.bn3(x)
        x = self.relu3(x)
        x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]
        
        # ---------- 展平与全连接层 ----------
        # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]
        x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变
        
        x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]
        x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)
        x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸
        x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)
        
        return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数
 
 
 
# 初始化模型
model = CNN()
#model = model.to(device)  # 将模型移至GPU(如果可用)
# 5. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类任务
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器,学习率0.001
# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  
 
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  
 
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    # 记录每个 epoch 的准确率和损失
    train_acc_history = []
    test_acc_history = []
    train_loss_history = []
    test_loss_history = []
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                    f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        
        # 更新学习率调度器
        scheduler.step(epoch_test_loss)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    # 绘制每个 epoch 的准确率和损失曲线
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率
 
# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
 
# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    
    # 绘制准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    
    # 绘制损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()
 
# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
 
# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

@浙大疏锦行 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2394360.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++深入类与对象

在上一篇中提到了构造函数,那么这篇再来提一下构造函数,编译器自动生成的默认构造函数对于内置类型不做处理,自定义类型会调用它自己的构造函数。对于自己写的构造函数,之前是在函数体中初始化,当然不止这一种初始化&a…

阿里云服务器邮件发送失败(dail tcp xxxx:25: i/o timeout)因为阿里云默认禁用 25 端口

最近在测试发送邮件的功能,发现了一个奇怪的问题,同样的 docker 镜像,在本地跑起来是可以正常发送邮件的,但是在阿里云的服务器上跑,就会报错 i/o timeout。 排查了一圈发现,原来是阿里云的操作&#xff0…

力扣HOT100之动态规划:322. 零钱兑换

这道题和上一道题279.完全平方数的套路是完全一样的,但是这道题不需要我们自己生成物品列表,函数的输入中已经给出了,但是这道题有一个坑,就是我们在初始化dp数组的时候,所有的位置不应该赋值为INT_MAX,因为…

电商售后服务系统与其他系统集成:实现售后流程自动化

在竞争激烈的电商市场中,优质的售后服务对于提升用户满意度和忠诚度至关重要。然而,售后服务流程通常涉及多个环节和系统,如何高效地管理这些流程,减少人工干预,提升服务效率,是电商企业亟待解决的问题。电…

kafka学习笔记(三、消费者Consumer使用教程——消费性能多线程提升思考)

1.简介 KafkaConsumer是非线程安全的,它定义了一个acquire()方法来检测当前是否只有一个线程在操作,如不是则会抛出ConcurrentModifcationException异常。 acquire()可以看做是一个轻量级锁,它仅通过线程操作计数标记的方式来检测线程是否发…

[JVM] JVM内存调优

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…

秒出PPT正式改名秒出AI,开启AI赋能新体验!

在现代办公环境中,借助智能工具提升工作效率已经成为趋势。秒出AI作为一款集AI PPT制作、动画、巨幕、视频、设计以及智能简历功能于一体的综合办公平台,为用户提供一站式智能内容生成解决方案,极大地简化了内容创作流程。 1. AI驱动的一键P…

VM改MAC电脑密码(截图)

进入恢复模式重置密码 重启mac并同时按下CommandR,进入恢复模式。进入「菜单栏-实用程序-终端」,输入命令「resetpassword」回车运行,调出密码重置工具。选择包含密码的启动磁盘卷宗、需重设密码的用户账户;输入并确认新的用户密…

SpringBoot+Vue+微信小程序校园自助打印系统

概述​​ 校园自助打印系统是现代化校园建设中不可或缺的一部分,基于SpringBootVue微信小程序开发的​​免费Java源码​​项目,包含完整的用户预约、打印店管理等功能模块。 ​​主要内容​​ ​​ 系统功能模块​​ ​​登录验证模块​​:…

【论文精读】2024 CVPR--Upscale-A-Video现实世界视频超分辨率(RealWorld VSR)

文章目录 一、摘要二、挑战三、Method3.1 前置知识3.1.1 预训练SD 4 Upscaler3.1.2 Inflated 2D Convolution 扩展2D卷积 3.2 Local Consistency within Video Segments 视频片段中的一致性3.2.1 微调时序U-Net3.2.2 微调时序VAE-Decoder 3.3 跨片段的全局一致性 Global Consis…

学术合作交流

想找志同道合的科研小伙伴!研究方向包括:计算机视觉(CV)、人工智能(AI)、目标检测、行人重识别、行人搜索、虹膜识别等。欢迎具备扎实基础的本科、硕士及博士生加入,共同致力于高质量 SCI 期刊和…

【LUT技术专题】图像自适应3DLUT

3DLUT开山之作: Learning Image-adaptive 3D Lookup Tables for High Performance Photo Enhancement in Real-time(2020 TPAMI ) 专题介绍一、研究背景二、图像自适应3DLUT方法2.1 前置知识2.2 整体流程2.3 损失函数的设计 三、实验结果四、局限五、总结…

德拜温度热容推导

目录 一、背景与基本假设 一、态密度的定义 二、从波矢空间出发 三、振动模式数与波矢体积关系 四、模式总数计算 五、态密度求导 六、德拜频率确定与归一化条件 二、内能表达式的推导 三、态密度代入与变量替换 四、求比热容 五、低温时() …

【iOS】源码阅读(五)——类类的结构分析

文章目录 前言类的分析类的本质objc_class 、objc_object和NSObjectobjc_object:所有对象的基类型objc_class:类的底层结构NSObject:面向用户的根类 小结 指针内存偏移普通指针----值拷贝对象----指针拷贝或引用拷贝用数组指针引出----内存偏…

基于CangjieMagic的RAG技术赋能智能问答系统

目录 引言 示例程序分析 代码结构剖析 导入模块解读 智能体配置详情 提示词模板说明 主程序功能解析 异步聊天功能实现 检索信息展示 技术要点总结 ollama 本地部署nomic-embed-text 运行测试 结语 引言 这段时间一直在学习CangjieMagic。前几天完成了在CangjieMa…

算力租赁革命:弹性模式如何重构数字时代的创新门槛​

一、算力革命:第四次工业革命的核心驱动力​ 在科技飞速发展的当下,我们正悄然迎来第四次工业革命。华为创始人任正非在一场程序设计竞赛中曾深刻指出,这场革命的基础便是大算力。随着 5G、人工智能、大数据、物联网等信息技术的迅猛发展&am…

图论回溯

图论 200.岛屿数量DFS 给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外&#xff…

RFID测温芯片助力新能源产业安全与能效提升

在“双碳”目标驱动下,新能源产业正经历爆发式增长。无论是电动汽车、储能电站还是风光发电场,设备安全与能效提升始终是行业核心命题。而温度,这个看似普通的物理参数,却成为破解这一命题的关键密码。RFID测温芯片(集…

S32K3 工具篇9:如何在无源码情况下灵活调试elf文件

S32K3 工具篇9:如何在无源码情况下灵活调试elf文件 一,文档简介二, 功能实现2.1 代码工具准备2.2 elf修改功能实现:Fun2功能跳过2.2.1 PC越过Fun22.2.2 Fun2替换为nop 2.3 elf修改功能实现:Fun4替换Fun2入口2.3.1 link…

Nacos 配置文件总结

Nacos 配置文件总结 文章目录 Nacos 配置文件总结1 、在 Nacos 服务端添加配置文件1. 启动Nacos Server。2. 新建配置文件。3. 发布配置集后,我们便可以在配置列表中查看相应的配置文件。4. 配置nacos数据库5. 运行 Nacos 容器6. 验证安装结果7. 配置验证 2 、在 Na…