【Oracle】DQL语言

news2025/6/1 4:21:12

在这里插入图片描述

个人主页:Guiat
归属专栏:Oracle

在这里插入图片描述

文章目录

  • 1. DQL概述
    • 1.1 什么是DQL?
    • 1.2 DQL的核心功能
  • 2. SELECT语句基础
    • 2.1 基本语法结构
    • 2.2 最简单的查询
    • 2.3 DISTINCT去重
  • 3. WHERE条件筛选
    • 3.1 基本条件运算符
    • 3.2 逻辑运算符组合
    • 3.3 高级条件筛选
  • 4. 排序和分页
    • 4.1 ORDER BY排序
    • 4.2 分页查询
  • 5. 聚合函数和分组
    • 5.1 常用聚合函数
    • 5.2 GROUP BY分组
    • 5.3 HAVING子句
  • 6. 多表连接查询
    • 6.1 连接类型概览
    • 6.2 内连接(INNER JOIN)
    • 6.3 外连接(OUTER JOIN)
    • 6.4 自连接
  • 7. 子查询
    • 7.1 子查询类型
    • 7.2 标量子查询
    • 7.3 表子查询
    • 7.4 相关子查询
  • 8. 高级查询技巧
    • 8.1 窗口函数
    • 8.2 分析函数
    • 8.3 集合运算
  • 9. 实际应用案例
    • 9.1 销售数据分析系统
    • 9.2 员工绩效评估系统
    • 9.3 库存管理分析
  • 10. 性能优化技巧
    • 10.1 查询优化策略
    • 10.2 实用优化技巧

正文
DQL(Data Query Language)是SQL语言的核心组成部分,专门用于从数据库中查询和检索数据。在Oracle数据库中,DQL主要就是SELECT语句,但别小看这一个语句,它的功能强大到可以让你眼花缭乱!

1. DQL概述

1.1 什么是DQL?

DQL就像是数据库的"搜索引擎",你告诉它你想要什么数据,它就帮你从茫茫数据海洋中找出来。不管你的数据库有多大,DQL都能精准定位你需要的信息。

用户查询需求
DQL语句
Oracle查询引擎
数据检索
结果集返回

1.2 DQL的核心功能

Oracle DQL的功能可以分为以下几个层次:

Oracle DQL功能
基础查询
条件筛选
数据排序
分组统计
多表关联
子查询
高级分析
SELECT基本语法
字段选择
WHERE条件
逻辑运算
ORDER BY排序
多字段排序
GROUP BY分组
聚合函数
内连接
外连接
标量子查询
表子查询
窗口函数
分析函数

2. SELECT语句基础

2.1 基本语法结构

SELECT语句就像是一个万能工具箱,每个关键字都有自己的作用:

-- Oracle SELECT语句的完整语法结构
SELECT [DISTINCT] column1, column2, ...
FROM table_name
[WHERE condition]
[GROUP BY column1, column2, ...]
[HAVING condition]
[ORDER BY column1 [ASC|DESC], column2 [ASC|DESC], ...]
[OFFSET offset_value ROWS]
[FETCH NEXT number_of_rows ROWS ONLY];

2.2 最简单的查询

让我们从最基础的开始,就像学走路一样:

-- 查询所有员工信息
SELECT * FROM employees;

-- 查询特定字段
SELECT employee_id, first_name, last_name, salary 
FROM employees;

-- 使用别名让结果更友好
SELECT 
    employee_id AS "员工编号",
    first_name AS "名字",
    last_name AS "姓氏",
    salary AS "薪资"
FROM employees;

-- 计算字段
SELECT 
    first_name || ' ' || last_name AS "全名",
    salary * 12 AS "年薪",
    ROUND(salary * 1.1, 2) AS "涨薪后月薪"
FROM employees;

2.3 DISTINCT去重

有时候数据会有重复,DISTINCT就像是一个"去重神器":

-- 查询所有不重复的部门ID
SELECT DISTINCT department_id 
FROM employees;

-- 多字段组合去重
SELECT DISTINCT department_id, job_id 
FROM employees;

-- 统计不重复记录数
SELECT COUNT(DISTINCT department_id) AS "部门总数"
FROM employees;

3. WHERE条件筛选

3.1 基本条件运算符

WHERE子句就像是数据的"筛子",帮你过滤出想要的数据:

-- 数值比较
SELECT * FROM employees WHERE salary > 5000;
SELECT * FROM employees WHERE salary BETWEEN 3000 AND 8000;
SELECT * FROM employees WHERE department_id IN (10, 20, 30);

-- 字符串匹配
SELECT * FROM employees WHERE first_name = 'John';
SELECT * FROM employees WHERE first_name LIKE 'J%';  -- 以J开头
SELECT * FROM employees WHERE first_name LIKE '%son'; -- 以son结尾
SELECT * FROM employees WHERE first_name LIKE '_ohn'; -- 第一个字符任意,后面是ohn

-- 空值处理
SELECT * FROM employees WHERE commission_pct IS NULL;
SELECT * FROM employees WHERE commission_pct IS NOT NULL;

3.2 逻辑运算符组合

多个条件可以像搭积木一样组合起来:

-- AND:所有条件都必须满足
SELECT * FROM employees 
WHERE salary > 5000 AND department_id = 20;

-- OR:满足任一条件即可
SELECT * FROM employees 
WHERE department_id = 10 OR department_id = 20;

-- NOT:取反
SELECT * FROM employees 
WHERE NOT (salary < 3000);

-- 复杂条件组合
SELECT * FROM employees 
WHERE (salary > 5000 OR commission_pct IS NOT NULL)
  AND department_id IN (10, 20, 30)
  AND hire_date > DATE '2005-01-01';

3.3 高级条件筛选

Oracle提供了一些特殊的条件运算符:

-- EXISTS:检查子查询是否返回结果
SELECT * FROM departments d
WHERE EXISTS (
    SELECT 1 FROM employees e 
    WHERE e.department_id = d.department_id
);

-- ANY/SOME:与子查询结果中的任一值比较
SELECT * FROM employees
WHERE salary > ANY (
    SELECT salary FROM employees WHERE department_id = 20
);

-- ALL:与子查询结果中的所有值比较
SELECT * FROM employees
WHERE salary > ALL (
    SELECT salary FROM employees WHERE department_id = 20
);

-- REGEXP_LIKE:正则表达式匹配
SELECT * FROM employees
WHERE REGEXP_LIKE(first_name, '^[A-D].*');  -- 名字以A-D开头

4. 排序和分页

4.1 ORDER BY排序

排序就像给数据排队,让它们按你想要的顺序站好:

-- 单字段排序
SELECT * FROM employees ORDER BY salary DESC;  -- 按薪资降序
SELECT * FROM employees ORDER BY hire_date;    -- 按入职日期升序(默认)

-- 多字段排序
SELECT * FROM employees 
ORDER BY department_id, salary DESC;

-- 使用表达式排序
SELECT first_name, last_name, salary
FROM employees
ORDER BY LENGTH(first_name), salary DESC;

-- 空值排序控制
SELECT * FROM employees 
ORDER BY commission_pct NULLS LAST;  -- 空值排在最后

-- 使用CASE进行自定义排序
SELECT * FROM employees
ORDER BY 
    CASE department_id 
        WHEN 10 THEN 1
        WHEN 20 THEN 2
        WHEN 30 THEN 3
        ELSE 4
    END,
    salary DESC;

4.2 分页查询

Oracle 12c之后引入了标准的分页语法,比以前的ROWNUM方式更直观:

-- Oracle 12c+ 标准分页语法
SELECT employee_id, first_name, last_name, salary
FROM employees
ORDER BY salary DESC
OFFSET 10 ROWS FETCH NEXT 5 ROWS ONLY;  -- 跳过前10行,取接下来的5行

-- 传统的ROWNUM分页(适用于所有Oracle版本)
SELECT * FROM (
    SELECT ROWNUM rn, e.* FROM (
        SELECT * FROM employees ORDER BY salary DESC
    ) e WHERE ROWNUM <= 15
) WHERE rn > 10;

-- 使用ROW_NUMBER()窗口函数分页
SELECT * FROM (
    SELECT 
        employee_id, first_name, last_name, salary,
        ROW_NUMBER() OVER (ORDER BY salary DESC) as rn
    FROM employees
) WHERE rn BETWEEN 11 AND 15;

5. 聚合函数和分组

5.1 常用聚合函数

聚合函数就像是数据的"计算器",帮你做各种统计:

-- 基本聚合函数
SELECT 
    COUNT(*) AS "总员工数",
    COUNT(commission_pct) AS "有提成的员工数",
    AVG(salary) AS "平均薪资",
    SUM(salary) AS "薪资总和",
    MAX(salary) AS "最高薪资",
    MIN(salary) AS "最低薪资",
    STDDEV(salary) AS "薪资标准差",
    VARIANCE(salary) AS "薪资方差"
FROM employees;

-- 字符串聚合函数
SELECT 
    LISTAGG(first_name, ', ') WITHIN GROUP (ORDER BY first_name) AS "所有员工名字"
FROM employees;

-- 日期聚合
SELECT 
    MIN(hire_date) AS "最早入职日期",
    MAX(hire_date) AS "最晚入职日期"
FROM employees;

5.2 GROUP BY分组

分组就像是把数据按类别整理到不同的盒子里:

-- 按部门分组统计
SELECT 
    department_id,
    COUNT(*) AS "员工数量",
    AVG(salary) AS "平均薪资",
    SUM(salary) AS "部门薪资总和"
FROM employees
GROUP BY department_id
ORDER BY department_id;

-- 多字段分组
SELECT 
    department_id,
    job_id,
    COUNT(*) AS "员工数量",
    AVG(salary) AS "平均薪资"
FROM employees
GROUP BY department_id, job_id
ORDER BY department_id, job_id;

-- 使用表达式分组
SELECT 
    EXTRACT(YEAR FROM hire_date) AS "入职年份",
    COUNT(*) AS "该年入职人数"
FROM employees
GROUP BY EXTRACT(YEAR FROM hire_date)
ORDER BY "入职年份";

5.3 HAVING子句

HAVING就像是对分组结果的"二次筛选":

-- 筛选员工数量大于5的部门
SELECT 
    department_id,
    COUNT(*) AS "员工数量",
    AVG(salary) AS "平均薪资"
FROM employees
GROUP BY department_id
HAVING COUNT(*) > 5
ORDER BY "员工数量" DESC;

-- 复杂的HAVING条件
SELECT 
    department_id,
    COUNT(*) AS "员工数量",
    AVG(salary) AS "平均薪资"
FROM employees
WHERE hire_date > DATE '2005-01-01'  -- WHERE先筛选原始数据
GROUP BY department_id
HAVING AVG(salary) > 5000            -- HAVING再筛选分组结果
   AND COUNT(*) >= 3
ORDER BY "平均薪资" DESC;

6. 多表连接查询

6.1 连接类型概览

多表连接就像是把不同的拼图片拼在一起,形成完整的画面:

Oracle表连接类型
内连接 INNER JOIN
左外连接 LEFT JOIN
右外连接 RIGHT JOIN
全外连接 FULL OUTER JOIN
交叉连接 CROSS JOIN
自连接 SELF JOIN
只返回匹配的记录
返回左表所有记录
返回右表所有记录
返回两表所有记录
笛卡尔积
表与自身连接

6.2 内连接(INNER JOIN)

内连接是最常用的连接方式,只返回两表都有匹配的记录:

-- 标准内连接语法
SELECT 
    e.employee_id,
    e.first_name,
    e.last_name,
    d.department_name,
    j.job_title
FROM employees e
INNER JOIN departments d ON e.department_id = d.department_id
INNER JOIN jobs j ON e.job_id = j.job_id;

-- Oracle传统连接语法(等价于上面)
SELECT 
    e.employee_id,
    e.first_name,
    e.last_name,
    d.department_name,
    j.job_title
FROM employees e, departments d, jobs j
WHERE e.department_id = d.department_id
  AND e.job_id = j.job_id;

-- 多条件连接
SELECT 
    e.first_name,
    e.last_name,
    m.first_name AS "经理名字"
FROM employees e
INNER JOIN employees m ON e.manager_id = m.employee_id
WHERE e.salary > 5000;

6.3 外连接(OUTER JOIN)

外连接能保留一侧表的所有记录,即使另一侧没有匹配:

-- 左外连接:显示所有部门,包括没有员工的部门
SELECT 
    d.department_name,
    COUNT(e.employee_id) AS "员工数量"
FROM departments d
LEFT JOIN employees e ON d.department_id = e.department_id
GROUP BY d.department_id, d.department_name
ORDER BY d.department_name;

-- 右外连接:显示所有员工,包括没有部门的员工
SELECT 
    e.first_name,
    e.last_name,
    d.department_name
FROM departments d
RIGHT JOIN employees e ON d.department_id = e.department_id;

-- 全外连接:显示所有部门和所有员工
SELECT 
    e.first_name,
    e.last_name,
    d.department_name
FROM employees e
FULL OUTER JOIN departments d ON e.department_id = d.department_id;

-- Oracle传统外连接语法(使用(+))
SELECT 
    d.department_name,
    e.first_name
FROM departments d, employees e
WHERE d.department_id = e.department_id(+);  -- 左外连接

6.4 自连接

自连接就像是表在照镜子,与自己进行连接:

-- 查询员工及其经理信息
SELECT 
    emp.first_name || ' ' || emp.last_name AS "员工",
    mgr.first_name || ' ' || mgr.last_name AS "经理",
    emp.salary AS "员工薪资",
    mgr.salary AS "经理薪资"
FROM employees emp
LEFT JOIN employees mgr ON emp.manager_id = mgr.employee_id
ORDER BY emp.employee_id;

-- 查找薪资比同部门平均薪资高的员工
SELECT 
    e1.first_name,
    e1.last_name,
    e1.salary,
    e1.department_id
FROM employees e1
WHERE e1.salary > (
    SELECT AVG(e2.salary)
    FROM employees e2
    WHERE e2.department_id = e1.department_id
);

7. 子查询

7.1 子查询类型

子查询就像是"查询中的查询",可以嵌套使用:

Oracle子查询类型
标量子查询
行子查询
表子查询
相关子查询
非相关子查询
返回单个值
返回单行多列
返回多行多列
依赖外层查询
独立执行

7.2 标量子查询

标量子查询返回单个值,可以用在任何需要单个值的地方:

-- 查询薪资高于平均薪资的员工
SELECT 
    first_name,
    last_name,
    salary,
    (SELECT AVG(salary) FROM employees) AS "平均薪资"
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

-- 在SELECT子句中使用子查询
SELECT 
    first_name,
    last_name,
    salary,
    (SELECT department_name 
     FROM departments d 
     WHERE d.department_id = e.department_id) AS "部门名称"
FROM employees e;

-- 在ORDER BY中使用子查询
SELECT first_name, last_name, department_id
FROM employees
ORDER BY (
    SELECT department_name 
    FROM departments d 
    WHERE d.department_id = employees.department_id
);

7.3 表子查询

表子查询返回多行多列,可以当作临时表使用:

-- 查询每个部门薪资最高的员工
SELECT 
    e.first_name,
    e.last_name,
    e.salary,
    e.department_id
FROM employees e
WHERE (e.department_id, e.salary) IN (
    SELECT department_id, MAX(salary)
    FROM employees
    GROUP BY department_id
);

-- 使用子查询作为临时表
SELECT 
    dept_stats.department_id,
    dept_stats.avg_salary,
    d.department_name
FROM (
    SELECT 
        department_id,
        AVG(salary) as avg_salary,
        COUNT(*) as emp_count
    FROM employees
    GROUP BY department_id
    HAVING COUNT(*) > 5
) dept_stats
JOIN departments d ON dept_stats.department_id = d.department_id;

7.4 相关子查询

相关子查询的执行依赖于外层查询的每一行:

-- 查询薪资高于本部门平均薪资的员工
SELECT 
    e1.first_name,
    e1.last_name,
    e1.salary,
    e1.department_id
FROM employees e1
WHERE e1.salary > (
    SELECT AVG(e2.salary)
    FROM employees e2
    WHERE e2.department_id = e1.department_id
);

-- 使用EXISTS的相关子查询
SELECT 
    d.department_name
FROM departments d
WHERE EXISTS (
    SELECT 1
    FROM employees e
    WHERE e.department_id = d.department_id
      AND e.salary > 10000
);

-- 查询每个部门中入职最早的员工
SELECT 
    e1.first_name,
    e1.last_name,
    e1.hire_date,
    e1.department_id
FROM employees e1
WHERE e1.hire_date = (
    SELECT MIN(e2.hire_date)
    FROM employees e2
    WHERE e2.department_id = e1.department_id
);

8. 高级查询技巧

8.1 窗口函数

窗口函数是Oracle的强大功能,可以在不改变结果集行数的情况下进行分析:

-- ROW_NUMBER():为每行分配唯一序号
SELECT 
    first_name,
    last_name,
    salary,
    department_id,
    ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary DESC) as dept_rank
FROM employees;

-- RANK()和DENSE_RANK():处理并列排名
SELECT 
    first_name,
    last_name,
    salary,
    RANK() OVER (ORDER BY salary DESC) as salary_rank,
    DENSE_RANK() OVER (ORDER BY salary DESC) as dense_rank
FROM employees;

-- LAG()和LEAD():访问前后行数据
SELECT 
    first_name,
    last_name,
    salary,
    LAG(salary, 1) OVER (ORDER BY hire_date) as prev_salary,
    LEAD(salary, 1) OVER (ORDER BY hire_date) as next_salary
FROM employees;

-- 累计统计
SELECT 
    first_name,
    last_name,
    salary,
    SUM(salary) OVER (ORDER BY hire_date ROWS UNBOUNDED PRECEDING) as running_total,
    AVG(salary) OVER (ORDER BY hire_date ROWS 2 PRECEDING) as moving_avg
FROM employees;

8.2 分析函数

分析函数提供了更多的统计分析能力:

-- NTILE():将数据分成N个桶
SELECT 
    first_name,
    last_name,
    salary,
    NTILE(4) OVER (ORDER BY salary) as salary_quartile
FROM employees;

-- PERCENT_RANK():百分位排名
SELECT 
    first_name,
    last_name,
    salary,
    PERCENT_RANK() OVER (ORDER BY salary) as pct_rank,
    CUME_DIST() OVER (ORDER BY salary) as cumulative_dist
FROM employees;

-- FIRST_VALUE()和LAST_VALUE()
SELECT 
    first_name,
    last_name,
    salary,
    department_id,
    FIRST_VALUE(salary) OVER (
        PARTITION BY department_id 
        ORDER BY salary DESC 
        ROWS UNBOUNDED PRECEDING
    ) as highest_salary_in_dept,
    LAST_VALUE(salary) OVER (
        PARTITION BY department_id 
        ORDER BY salary DESC 
        ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    ) as lowest_salary_in_dept
FROM employees;

8.3 集合运算

集合运算可以组合多个查询的结果:

-- UNION:合并结果集(去重)
SELECT first_name, last_name FROM employees WHERE department_id = 10
UNION
SELECT first_name, last_name FROM employees WHERE salary > 10000;

-- UNION ALL:合并结果集(不去重)
SELECT 'Employee' as type, first_name, last_name FROM employees
UNION ALL
SELECT 'Manager' as type, first_name, last_name FROM employees WHERE manager_id IS NULL;

-- INTERSECT:交集
SELECT employee_id FROM employees WHERE department_id = 20
INTERSECT
SELECT employee_id FROM employees WHERE salary > 5000;

-- MINUS:差集
SELECT employee_id FROM employees WHERE department_id = 20
MINUS
SELECT employee_id FROM employees WHERE salary > 8000;

9. 实际应用案例

9.1 销售数据分析系统

让我们看一个完整的销售数据分析案例:

-- 创建示例表结构
CREATE TABLE sales_data (
    sale_id NUMBER PRIMARY KEY,
    product_id NUMBER,
    customer_id NUMBER,
    sale_date DATE,
    quantity NUMBER,
    unit_price NUMBER(10,2),
    total_amount NUMBER(12,2),
    sales_rep_id NUMBER,
    region VARCHAR2(50)
);

-- 复杂的销售分析查询
WITH monthly_sales AS (
    -- 月度销售统计
    SELECT 
        EXTRACT(YEAR FROM sale_date) as sale_year,
        EXTRACT(MONTH FROM sale_date) as sale_month,
        region,
        SUM(total_amount) as monthly_total,
        COUNT(*) as transaction_count,
        AVG(total_amount) as avg_transaction
    FROM sales_data
    WHERE sale_date >= ADD_MONTHS(SYSDATE, -12)
    GROUP BY EXTRACT(YEAR FROM sale_date), EXTRACT(MONTH FROM sale_date), region
),
regional_rankings AS (
    -- 区域排名
    SELECT 
        *,
        RANK() OVER (PARTITION BY sale_year, sale_month ORDER BY monthly_total DESC) as region_rank,
        LAG(monthly_total) OVER (PARTITION BY region ORDER BY sale_year, sale_month) as prev_month_total
    FROM monthly_sales
)
SELECT 
    sale_year,
    sale_month,
    region,
    monthly_total,
    region_rank,
    CASE 
        WHEN prev_month_total IS NULL THEN 'N/A'
        ELSE ROUND(((monthly_total - prev_month_total) / prev_month_total) * 100, 2) || '%'
    END as growth_rate,
    SUM(monthly_total) OVER (PARTITION BY region ORDER BY sale_year, sale_month) as running_total
FROM regional_rankings
ORDER BY sale_year, sale_month, region_rank;

9.2 员工绩效评估系统

-- 员工绩效综合评估
WITH employee_metrics AS (
    SELECT 
        e.employee_id,
        e.first_name,
        e.last_name,
        e.department_id,
        e.salary,
        e.hire_date,
        -- 计算工作年限
        ROUND(MONTHS_BETWEEN(SYSDATE, e.hire_date) / 12, 1) as years_of_service,
        -- 部门内薪资排名
        RANK() OVER (PARTITION BY e.department_id ORDER BY e.salary DESC) as dept_salary_rank,
        -- 薪资百分位
        PERCENT_RANK() OVER (ORDER BY e.salary) as salary_percentile
    FROM employees e
),
performance_scores AS (
    SELECT 
        em.*,
        d.department_name,
        -- 综合评分计算
        CASE 
            WHEN salary_percentile >= 0.8 THEN 5
            WHEN salary_percentile >= 0.6 THEN 4
            WHEN salary_percentile >= 0.4 THEN 3
            WHEN salary_percentile >= 0.2 THEN 2
            ELSE 1
        END as salary_score,
        CASE 
            WHEN years_of_service >= 10 THEN 5
            WHEN years_of_service >= 7 THEN 4
            WHEN years_of_service >= 5 THEN 3
            WHEN years_of_service >= 2 THEN 2
            ELSE 1
        END as experience_score
    FROM employee_metrics em
    JOIN departments d ON em.department_id = d.department_id
)
SELECT 
    first_name,
    last_name,
    department_name,
    salary,
    years_of_service,
    dept_salary_rank,
    ROUND(salary_percentile * 100, 1) as salary_percentile_pct,
    (salary_score + experience_score) as total_score,
    CASE 
        WHEN (salary_score + experience_score) >= 8 THEN 'Excellent'
        WHEN (salary_score + experience_score) >= 6 THEN 'Good'
        WHEN (salary_score + experience_score) >= 4 THEN 'Average'
        ELSE 'Below Average'
    END as performance_rating
FROM performance_scores
ORDER BY total_score DESC, salary DESC;

9.3 库存管理分析

-- 库存周转率分析
WITH inventory_analysis AS (
    SELECT 
        p.product_id,
        p.product_name,
        p.category,
        i.current_stock,
        i.reorder_level,
        -- 计算过去30天的销售量
        NVL(s.sales_30days, 0) as sales_30days,
        -- 计算库存天数
        CASE 
            WHEN NVL(s.sales_30days, 0) = 0 THEN 999
            ELSE ROUND(i.current_stock / (s.sales_30days / 30), 1)
        END as days_of_inventory,
        -- 库存状态
        CASE 
            WHEN i.current_stock <= i.reorder_level THEN 'Low Stock'
            WHEN i.current_stock <= i.reorder_level * 1.5 THEN 'Medium Stock'
            ELSE 'High Stock'
        END as stock_status
    FROM products p
    JOIN inventory i ON p.product_id = i.product_id
    LEFT JOIN (
        SELECT 
            product_id,
            SUM(quantity) as sales_30days
        FROM sales_data
        WHERE sale_date >= SYSDATE - 30
        GROUP BY product_id
    ) s ON p.product_id = s.product_id
)
SELECT 
    product_name,
    category,
    current_stock,
    sales_30days,
    days_of_inventory,
    stock_status,
    -- 库存周转率分类
    CASE 
        WHEN days_of_inventory <= 7 THEN 'Fast Moving'
        WHEN days_of_inventory <= 30 THEN 'Normal Moving'
        WHEN days_of_inventory <= 90 THEN 'Slow Moving'
        ELSE 'Dead Stock'
    END as turnover_category,
    -- 建议行动
    CASE 
        WHEN stock_status = 'Low Stock' THEN 'Reorder Immediately'
        WHEN days_of_inventory > 90 THEN 'Consider Promotion'
        WHEN days_of_inventory <= 7 THEN 'Monitor Closely'
        ELSE 'Normal Operation'
    END as recommended_action
FROM inventory_analysis
ORDER BY 
    CASE stock_status 
        WHEN 'Low Stock' THEN 1
        WHEN 'Medium Stock' THEN 2
        ELSE 3
    END,
    days_of_inventory;

10. 性能优化技巧

10.1 查询优化策略

Oracle DQL性能优化
索引优化
查询重写
执行计划分析
统计信息更新
选择合适的索引类型
复合索引设计
函数索引应用
避免全表扫描
优化JOIN顺序
子查询优化
使用EXPLAIN PLAN
分析执行成本
识别性能瓶颈
定期收集统计信息
使用直方图

10.2 实用优化技巧

-- 1. 使用绑定变量避免硬解析
-- 不好的写法
SELECT * FROM employees WHERE employee_id = 100;
SELECT * FROM employees WHERE employee_id = 101;

-- 好的写法(使用绑定变量)
SELECT * FROM employees WHERE employee_id = :emp_id;

-- 2. 合理使用索引提示
SELECT /*+ INDEX(e, emp_department_ix) */ 
    first_name, last_name 
FROM employees e 
WHERE department_id = 20;

-- 3. 避免在WHERE子句中使用函数
-- 不好的写法
SELECT * FROM employees WHERE UPPER(first_name) = 'JOHN';

-- 好的写法
SELECT * FROM employees WHERE first_name = 'John';

-- 4. 使用EXISTS代替IN(当子查询返回大量数据时)
-- 可能较慢
SELECT * FROM departments 
WHERE department_id IN (SELECT department_id FROM employees);

-- 通常更快
SELECT * FROM departments d
WHERE EXISTS (SELECT 1 FROM employees e WHERE e.department_id = d.department_id);

-- 5. 分页查询优化
-- 对于大数据量的分页,使用基于游标的分页
SELECT * FROM (
    SELECT employee_id, first_name, last_name, salary,
           ROW_NUMBER() OVER (ORDER BY employee_id) as rn
    FROM employees
    WHERE salary > 5000
) WHERE rn BETWEEN 1001 AND 1020;

Oracle的DQL功能真的是博大精深,从简单的SELECT到复杂的分析函数,每一个功能都有其独特的应用场景。掌握这些技巧,你就能像数据库的"魔法师"一样,从海量数据中快速提取出有价值的信息。记住,实践是最好的老师,多写多练,你会发现DQL的魅力所在!

结语
感谢您的阅读!期待您的一键三连!欢迎指正!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2392285.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HUAWEI华为MateBook D 14 2021款i5,i7集显非触屏(NBD-WXX9,NbD-WFH9)原装出厂Win10系统

适用型号&#xff1a;NbD-WFH9、NbD-WFE9A、NbD-WDH9B、NbD-WFE9、 链接&#xff1a;https://pan.baidu.com/s/1qTCbaQQa8xqLR-4Ooe3ytg?pwdvr7t 提取码&#xff1a;vr7t 华为原厂WIN系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、系统属性专属LOGO标志、Office…

【STIP】安全Transformer推理协议

Secure Transformer Inference Protocol 论文地址&#xff1a;https://arxiv.org/abs/2312.00025 摘要 模型参数和用户数据的安全性对于基于 Transformer 的服务&#xff08;例如 ChatGPT&#xff09;至关重要。虽然最近在安全两方协议方面取得的进步成功地解决了服务 Transf…

leetcode hot100刷题日记——27.对称二叉树

方法一&#xff1a;递归法 class Solution { public:bool check(TreeNode *left,TreeNode *right){//左子树和右子树的节点同时是空的是对称的if(leftnullptr&&rightnullptr){return true;}if(leftnullptr||rightnullptr){return false;}//检查左右子树的值相不相等&a…

高考加油(Python+HTML)

前言 询问DeepSeek根据自己所学到的知识来生成多个可执行的代码&#xff0c;为高考学子加油。最开始生成的都会有点小问题&#xff0c;还是需要自己调试一遍&#xff0c;下面就是完整的代码&#xff0c;当然了最后几天也不会有多少人看&#xff0c;都在专心的备考。 Python励…

贪心算法应用:Ford-Fulkerson最大流问题详解

Java中的贪心算法应用:Ford-Fulkerson最大流问题详解 1. 最大流问题概述 最大流问题(Maximum Flow Problem)是图论中的一个经典问题,旨在找到一个从源节点(source)到汇节点(sink)的最大流量。Ford-Fulkerson方法是解决最大流问题的经典算法之一,它属于贪心算法的范畴…

UE5 Niagara 如何让四元数进行旋转

Axis Angle中&#xff0c;X,Y,Z分别为旋转的轴向&#xff0c;W为旋转的角度&#xff0c;在这里旋转角度不需要除以2&#xff0c;因为里面已经除了&#xff0c;再将计算好的四元数与要进行旋转的四元数进行相乘&#xff0c;结果就是按照原来的角度绕着某一轴向旋转了某一角度

从“黑箱”到透明化:MES如何重构生产执行全流程?

引言 在传统制造企业中&#xff0c;生产执行环节常面临“计划混乱、进度难控、异常频发、数据滞后”的困境。人工派工效率低下、物料错配频发、质量追溯困难等问题&#xff0c;直接导致交付延期、成本攀升、客户流失。深蓝易网MES系统以全流程数字化管理为核心&#xff0c;通过…

探索Linux互斥:线程安全与资源共享

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言&#xff1a; 互斥是并发编程中避免竞争条件和保护共享资源的核心技术。通过使用锁或信号量等机制&#xff0c;能够确保多线程或多进程环境下对共享资源的安全访问&#xff0c;避免数据不一致、死锁等问题。 竞争条件 竞…

JWT安全:假密钥.【签名随便写实现越权绕过.】

JWT安全&#xff1a;假密钥【签名随便写实现越权绕过.】 JSON Web 令牌 (JWT)是一种在系统之间发送加密签名 JSON 数据的标准化格式。理论上&#xff0c;它们可以包含任何类型的数据&#xff0c;但最常用于在身份验证、会话处理和访问控制机制中发送有关用户的信息(“声明”)。…

Python爬虫实战:抓取百度15天天气预报数据

&#x1f310; 编程基础第一期《9-30》–使用python中的第三方模块requests&#xff0c;和三个内置模块(re、json、pprint)&#xff0c;实现百度地图的近15天天气信息抓取 记得安装 pip install requests&#x1f4d1; 项目介绍 网络爬虫是Python最受欢迎的应用场景之一&…

RV1126 + FFPEG多路码流项目

代码主体思路&#xff1a; 一.VI,VENC,RGA模块初始化 1.先创建一个自定义公共结构体&#xff0c;用于方便管理各个模块 rkmedia_config_public.h //文件名字#ifndef _RV1126_PUBLIC_H #define _RV1126_PUBLIC_H#include <assert.h> #include <fcntl.h> #include …

NodeJS 基于 Koa, 开发一个读取文件,并返回给客户端文件下载,以及读取文件形成列表和文件删除的代码演示

前言 在上一篇文章 《Nodejs 实现 Mysql 数据库的全量备份的代码演示》 中&#xff0c;我们演示了如何将用户的 Mysql 数据库进行备份的代码。但是&#xff0c;这个备份&#xff0c;只是备份在了服务器上了。 而我们用户的真实需求&#xff0c;是需要将备份文件下载到本地进行…

为什么在我的Flask里面有两个路由,但是在网页里有一个却不能正确访问到智能体

1. /zhoushibo 能访问&#xff0c;/chat 直接浏览器访问报 Method Not Allowed 原因&#xff1a; /zhoushibo 路由是你用 app.route(/zhoushibo) 定义的&#xff0c;返回的是一个HTML网页&#xff0c;浏览器访问没问题。 /chat 路由你用的是 app.route(/chat, methods[POST])…

哈工大计算机系统2024大作业——Hello的程序人生

计算机系统 大作业 题 目 程序人生-Hello’s P2P 专 业 人工智能 学   号 2022112040 班 级 2203601 学 生 郄东昕 指 导 教 师 吴锐 计算机科学与技术学院…

2025年软件测试面试八股文(含答案+文档)

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Part1 1、你的测试职业发展是什么&#xff1f; 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师…

Flutter3.22适配运行鸿蒙系统问题记录

Flutter3.22适配运行鸿蒙系统问题记录 一&#xff1a;适配条件适配过程问题记录&#xff08;1&#xff09;环境配置问题&#xff08;2&#xff09;Concurrent modification during iteration: Instance(length:2) of_GrowableList 报错&#xff08;3&#xff09;三方插件寻找替…

秋招Day10 - JVM - 内存管理

JVM组织架构主要有三个部分&#xff1a;类加载器、运行时数据区和字节码执行引擎 类加载器&#xff1a;负责从文件系统、网络或其他来源加载class文件&#xff0c;将class文件中的二进制数据加载到内存中运行时数据区&#xff1a;运行时的数据存放的区域&#xff0c;分为方法区…

Spring Boot 3.5.0中文文档上线

Spring Boot 3.5.0 中文文档翻译完成&#xff0c;需要的可收藏 传送门&#xff1a;Spring Boot 3.5.0 中文文档

Redisson学习专栏(一):快速入门及核心API实践

文章目录 前言一、Redisson简介1.1 什么是Redisson&#xff1f;1.2 解决了什么问题&#xff1f; 二、快速入门2.1 环境准备 2.2 基础配置三、核心API解析3.1 分布式锁&#xff08;RLock&#xff09;3.2 分布式集合3.2.1 RMap&#xff08;分布式Map&#xff09;3.2.2 RList&…

Pandas学习入门一

1.什么是Pandas? Pandas是一个强大的分析结构化数据的工具集&#xff0c;基于NumPy构建&#xff0c;提供了高级数据结构和数据操作工具&#xff0c;它是使Python成为强大而高效的数据分析环境的重要因素之一。 一个强大的分析和操作大型结构化数据集所需的工具集基础是NumPy…