贪心算法应用:Ford-Fulkerson最大流问题详解

news2025/7/21 20:07:30

在这里插入图片描述

Java中的贪心算法应用:Ford-Fulkerson最大流问题详解

1. 最大流问题概述

最大流问题(Maximum Flow Problem)是图论中的一个经典问题,旨在找到一个从源节点(source)到汇节点(sink)的最大流量。Ford-Fulkerson方法是解决最大流问题的经典算法之一,它属于贪心算法的范畴。

1.1 问题定义

给定一个有向图G=(V,E),其中:

  • V是顶点集
  • E是边集
  • 每条边(u,v)∈E有一个非负容量c(u,v)≥0
  • 有两个特殊顶点:源点s和汇点t

目标是找到从s到t的最大流量,满足:

  1. 容量约束:对于所有边(u,v),流量f(u,v)≤c(u,v)
  2. 流量守恒:对于所有顶点u∈V-{s,t},流入u的流量等于流出u的流量

2. Ford-Fulkerson算法原理

Ford-Fulkerson算法基于以下关键概念:

2.1 残差网络(Residual Network)

对于给定的流网络G和流量f,残差网络G_f由可以容纳更多流量的边组成。对于每条边(u,v)∈E:

  • 如果f(u,v) < c(u,v),则在G_f中包含一条边(u,v),其残差容量为c_f(u,v) = c(u,v) - f(u,v)
  • 如果f(u,v) > 0,则在G_f中包含一条反向边(v,u),其残差容量为c_f(v,u) = f(u,v)

2.2 增广路径(Augmenting Path)

增广路径是残差网络G_f中从s到t的一条简单路径。路径的瓶颈容量是该路径上边的最小残差容量。

2.3 算法步骤

  1. 初始化:对所有(u,v)∈E,设f(u,v)=0
  2. 在残差网络G_f中寻找一条从s到t的增广路径
  3. 如果存在增广路径:
    • 计算路径的瓶颈容量
    • 沿着路径增加流量
    • 更新残差网络
    • 重复步骤2
  4. 如果不存在增广路径,算法终止,当前流即为最大流

3. Java实现详解

下面我们将用Java完整实现Ford-Fulkerson算法,包括辅助数据结构。

3.1 图表示

首先定义图的表示方式,这里使用邻接矩阵:

public class FordFulkerson {
   
    private static final int INF = Integer.MAX_VALUE;
    
    private int[][] capacity; // 容量矩阵
    private int[][] flow;     // 流量矩阵
    private int[] parent;     // 用于BFS查找路径
    private boolean[] visited; // 访问标记
    private int numVertices;  // 顶点数量
    
    public FordFulkerson(int numVertices) {
   
        this.numVertices = numVertices;
        this.capacity = new int[numVertices][numVertices];
        this.flow = new int[numVertices][numVertices];
        this.parent = new int[numVertices];
        this.visited = new boolean[numVertices];
    }
    
    public void addEdge(int u, int v, int cap) {
   
        capacity[u][v] = cap;
    }
}

3.2 BFS实现查找增广路径

Ford-Fulkerson算法可以使用BFS(此时称为Edmonds-Karp算法)来查找增广路径:

private boolean bfs(int source, int sink) {
   
    Arrays.fill(visited, false);
    Queue<Integer> queue = new LinkedList<>();
    queue.add(source);
    visited[source] = true;
    parent[source] = -1;
    
    while (!queue.isEmpty()) {
   
        int u = queue.poll();
        
        for (int v = 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2392280.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UE5 Niagara 如何让四元数进行旋转

Axis Angle中&#xff0c;X,Y,Z分别为旋转的轴向&#xff0c;W为旋转的角度&#xff0c;在这里旋转角度不需要除以2&#xff0c;因为里面已经除了&#xff0c;再将计算好的四元数与要进行旋转的四元数进行相乘&#xff0c;结果就是按照原来的角度绕着某一轴向旋转了某一角度

从“黑箱”到透明化:MES如何重构生产执行全流程?

引言 在传统制造企业中&#xff0c;生产执行环节常面临“计划混乱、进度难控、异常频发、数据滞后”的困境。人工派工效率低下、物料错配频发、质量追溯困难等问题&#xff0c;直接导致交付延期、成本攀升、客户流失。深蓝易网MES系统以全流程数字化管理为核心&#xff0c;通过…

探索Linux互斥:线程安全与资源共享

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言&#xff1a; 互斥是并发编程中避免竞争条件和保护共享资源的核心技术。通过使用锁或信号量等机制&#xff0c;能够确保多线程或多进程环境下对共享资源的安全访问&#xff0c;避免数据不一致、死锁等问题。 竞争条件 竞…

JWT安全:假密钥.【签名随便写实现越权绕过.】

JWT安全&#xff1a;假密钥【签名随便写实现越权绕过.】 JSON Web 令牌 (JWT)是一种在系统之间发送加密签名 JSON 数据的标准化格式。理论上&#xff0c;它们可以包含任何类型的数据&#xff0c;但最常用于在身份验证、会话处理和访问控制机制中发送有关用户的信息(“声明”)。…

Python爬虫实战:抓取百度15天天气预报数据

&#x1f310; 编程基础第一期《9-30》–使用python中的第三方模块requests&#xff0c;和三个内置模块(re、json、pprint)&#xff0c;实现百度地图的近15天天气信息抓取 记得安装 pip install requests&#x1f4d1; 项目介绍 网络爬虫是Python最受欢迎的应用场景之一&…

RV1126 + FFPEG多路码流项目

代码主体思路&#xff1a; 一.VI,VENC,RGA模块初始化 1.先创建一个自定义公共结构体&#xff0c;用于方便管理各个模块 rkmedia_config_public.h //文件名字#ifndef _RV1126_PUBLIC_H #define _RV1126_PUBLIC_H#include <assert.h> #include <fcntl.h> #include …

NodeJS 基于 Koa, 开发一个读取文件,并返回给客户端文件下载,以及读取文件形成列表和文件删除的代码演示

前言 在上一篇文章 《Nodejs 实现 Mysql 数据库的全量备份的代码演示》 中&#xff0c;我们演示了如何将用户的 Mysql 数据库进行备份的代码。但是&#xff0c;这个备份&#xff0c;只是备份在了服务器上了。 而我们用户的真实需求&#xff0c;是需要将备份文件下载到本地进行…

为什么在我的Flask里面有两个路由,但是在网页里有一个却不能正确访问到智能体

1. /zhoushibo 能访问&#xff0c;/chat 直接浏览器访问报 Method Not Allowed 原因&#xff1a; /zhoushibo 路由是你用 app.route(/zhoushibo) 定义的&#xff0c;返回的是一个HTML网页&#xff0c;浏览器访问没问题。 /chat 路由你用的是 app.route(/chat, methods[POST])…

哈工大计算机系统2024大作业——Hello的程序人生

计算机系统 大作业 题 目 程序人生-Hello’s P2P 专 业 人工智能 学   号 2022112040 班 级 2203601 学 生 郄东昕 指 导 教 师 吴锐 计算机科学与技术学院…

2025年软件测试面试八股文(含答案+文档)

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Part1 1、你的测试职业发展是什么&#xff1f; 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师…

Flutter3.22适配运行鸿蒙系统问题记录

Flutter3.22适配运行鸿蒙系统问题记录 一&#xff1a;适配条件适配过程问题记录&#xff08;1&#xff09;环境配置问题&#xff08;2&#xff09;Concurrent modification during iteration: Instance(length:2) of_GrowableList 报错&#xff08;3&#xff09;三方插件寻找替…

秋招Day10 - JVM - 内存管理

JVM组织架构主要有三个部分&#xff1a;类加载器、运行时数据区和字节码执行引擎 类加载器&#xff1a;负责从文件系统、网络或其他来源加载class文件&#xff0c;将class文件中的二进制数据加载到内存中运行时数据区&#xff1a;运行时的数据存放的区域&#xff0c;分为方法区…

Spring Boot 3.5.0中文文档上线

Spring Boot 3.5.0 中文文档翻译完成&#xff0c;需要的可收藏 传送门&#xff1a;Spring Boot 3.5.0 中文文档

Redisson学习专栏(一):快速入门及核心API实践

文章目录 前言一、Redisson简介1.1 什么是Redisson&#xff1f;1.2 解决了什么问题&#xff1f; 二、快速入门2.1 环境准备 2.2 基础配置三、核心API解析3.1 分布式锁&#xff08;RLock&#xff09;3.2 分布式集合3.2.1 RMap&#xff08;分布式Map&#xff09;3.2.2 RList&…

Pandas学习入门一

1.什么是Pandas? Pandas是一个强大的分析结构化数据的工具集&#xff0c;基于NumPy构建&#xff0c;提供了高级数据结构和数据操作工具&#xff0c;它是使Python成为强大而高效的数据分析环境的重要因素之一。 一个强大的分析和操作大型结构化数据集所需的工具集基础是NumPy…

基于Piecewise Jerk Speed Optimizer的速度规划算法(附ROS C++/Python仿真)

目录 1 时空解耦运动规划2 PJSO速度规划原理2.1 优化变量2.2 代价函数2.3 约束条件2.4 二次规划形式 3 算法仿真3.1 ROS C仿真3.2 Python仿真 1 时空解耦运动规划 在自主移动系统的运动规划体系中&#xff0c;时空解耦的递进式架构因其高效性与工程可实现性被广泛采用。这一架…

游戏引擎学习第312天:跨实体手动排序

运行游戏并评估当前状况 目前排序功能基本已经正常&#xff0c;能够实现特定的排序要求&#xff0c;针对单一区域、单个房间的场景&#xff0c;效果基本符合预期。 不过还有一些细节需要调试。现在有些对象的缩放比例不对&#xff0c;导致它们看起来有些怪异&#xff0c;需要…

智警杯备赛--数据库管理与优化及数据库对象创建与管理

sql操作 插入数据 如果要操作数据表中的数据&#xff0c;首先应该确保表中存在数据。没有插入数据之前的表只是一张空表&#xff0c;需要使用insert语句向表中插入数据。插入数据有4种不同的方式&#xff1a;为所有字段插入数据、为指定字段插入数据、同时插入多条数据以及插…

MySQL 在 CentOS 7 环境下的安装教程

&#x1f31f; 各位看官好&#xff0c;我是maomi_9526&#xff01; &#x1f30d; 种一棵树最好是十年前&#xff0c;其次是现在&#xff01; &#x1f680; 今天来学习Mysql的相关知识。 &#x1f44d; 如果觉得这篇文章有帮助&#xff0c;欢迎您一键三连&#xff0c;分享给更…

K8S集群主机网络端口不通问题排查

一、环境&#xff1a; k8s: v1.23.6 docker: 20.10.14 问题和故障现象&#xff1a;devops主机集群主机节点到端口8082不通&#xff08;网络策略已经申请&#xff0c;并且网络策略已经实施完毕&#xff09;&#xff0c;而且网络实施人员再次确认&#xff0c;网络策…