python打卡day39

news2025/6/1 6:25:19

知识点回顾

  1. 图像数据的格式:灰度和彩色数据
  2. 模型的定义
  3. 显存占用的4种地方
    1. 模型参数+梯度参数
    2. 优化器参数
    3. 数据批量所占显存
    4. 神经元输出中间状态
  4. batchisize和训练的关系

课程代码:

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
# 设置随机种子,确保结果可复现
torch.manual_seed(42)

# 1. 数据预处理,该写法非常类似于管道pipeline
# transforms 模块提供了一系列常用的图像预处理操作

# 先归一化,再标准化
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt

# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)
# 随机选择一张图片,可以重复运行,每次都会随机选择
sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item() # 随机选择一张图片的索引
# len(train_dataset) 表示训练集的图片数量;size=(1,)表示返回一个索引;torch.randint() 函数用于生成一个指定范围内的随机数,item() 方法将张量转换为 Python 数字
image, label = train_dataset[sample_idx] # 获取图片和标签
# 可视化原始图像(需要反归一化)
def imshow(img):
    img = img * 0.3081 + 0.1307  # 反标准化
    npimg = img.numpy()
    plt.imshow(npimg[0], cmap='gray') # 显示灰度图像
    plt.show()

print(f"Label: {label}")
imshow(image)

Label: 7

# 打印下图片的形状
image.shape

torch.Size([1, 28, 28]) 

# 打印一张彩色图像,用cifar-10数据集
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# 设置随机种子确保结果可复现
torch.manual_seed(42)
# 定义数据预处理步骤
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 加载CIFAR-10训练集
trainset = torchvision.datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

# 创建数据加载器
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=4,
    shuffle=True
)

# CIFAR-10的10个类别
classes = ('plane', 'car', 'bird', 'cat', 'deer', 
           'dog', 'frog', 'horse', 'ship', 'truck')

# 随机选择一张图片
sample_idx = torch.randint(0, len(trainset), size=(1,)).item()
image, label = trainset[sample_idx]

# 打印图片形状
print(f"图像形状: {image.shape}")  # 输出: torch.Size([3, 32, 32])
print(f"图像类别: {classes[label]}")

# 定义图像显示函数(适用于CIFAR-10彩色图像)
def imshow(img):
    img = img / 2 + 0.5  # 反标准化处理,将图像范围从[-1,1]转回[0,1]
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))  # 调整维度顺序:(通道,高,宽) → (高,宽,通道)
    plt.axis('off')  # 关闭坐标轴显示
    plt.show()

# 显示图像
imshow(image)

图像形状: torch.Size([3, 32, 32])
图像类别: frog

# 先归一化,再标准化
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换为张量并归一化到[0,1]
    transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差,这个值很出名,所以直接使用
])
import matplotlib.pyplot as plt

# 2. 加载MNIST数据集,如果没有会自动下载
train_dataset = datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.MNIST(
    root='./data',
    train=False,
    transform=transform
)

# 定义两层MLP神经网络
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量
        self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元
        self.relu = nn.ReLU()  # 激活函数
        self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)
        
    def forward(self, x):
        x = self.flatten(x)  # 展平图像
        x = self.layer1(x)   # 第一层线性变换
        x = self.relu(x)     # 应用ReLU激活函数
        x = self.layer2(x)   # 第二层线性变换,输出logits
        return x

# 初始化模型
model = MLP()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)

from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸

模型结构信息:
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
           Flatten-1                  [-1, 784]               0
            Linear-2                  [-1, 128]         100,480
              ReLU-3                  [-1, 128]               0
            Linear-4                   [-1, 10]           1,290
================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.01
Params size (MB): 0.39
Estimated Total Size (MB): 0.40
----------------------------------------------------------------

class MLP(nn.Module):
    def __init__(self, input_size=3072, hidden_size=128, num_classes=10):
        super(MLP, self).__init__()
        # 展平层:将3×32×32的彩色图像转为一维向量
        # 输入尺寸计算:3通道 × 32高 × 32宽 = 3072
        self.flatten = nn.Flatten()
        
        # 全连接层
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  # 输出层
        
    def forward(self, x):
        x = self.flatten(x)  # 展平:[batch, 3, 32, 32] → [batch, 3072]
        x = self.fc1(x)      # 线性变换:[batch, 3072] → [batch, 128]
        x = self.relu(x)     # 激活函数
        x = self.fc2(x)      # 输出层:[batch, 128] → [batch, 10]
        return x

# 初始化模型
model = MLP()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)  # 将模型移至GPU(如果可用)

from torchsummary import summary  # 导入torchsummary库
print("\n模型结构信息:")
summary(model, input_size=(3, 32, 32))  # CIFAR-10 彩色图像(3×32×32)
    

 模型结构信息:
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
           Flatten-1                 [-1, 3072]               0
            Linear-2                  [-1, 128]         393,344
              ReLU-3                  [-1, 128]               0
            Linear-4                   [-1, 10]           1,290
================================================================
Total params: 394,634
Trainable params: 394,634
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.03
Params size (MB): 1.51
Estimated Total Size (MB): 1.54
----------------------------------------------------------------

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten() # nn.Flatten()会将每个样本的图像展平为 784 维向量,但保留 batch 维度。
        self.layer1 = nn.Linear(784, 128)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(128, 10)
        
    def forward(self, x):
        x = self.flatten(x)  # 输入:[batch_size, 1, 28, 28] → [batch_size, 784]
        x = self.layer1(x)   # [batch_size, 784] → [batch_size, 128]
        x = self.relu(x)
        x = self.layer2(x)   # [batch_size, 128] → [batch_size, 10]
        return x
from torch.utils.data import DataLoader

# 定义训练集的数据加载器,并指定batch_size
train_loader = DataLoader(
    dataset=train_dataset,  # 加载的数据集
    batch_size=64,          # 每次加载64张图像
    shuffle=True            # 训练时打乱数据顺序
)

# 定义测试集的数据加载器(通常batch_size更大,减少测试时间)
test_loader = DataLoader(
    dataset=test_dataset,
    batch_size=1000,
    shuffle=False
)

@浙大疏锦行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2392252.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3.8.5 利用RDD统计网站每月访问量

本项目旨在利用Spark RDD统计网站每月访问量。首先,创建名为“SparkRDDWebsiteTraffic”的Maven项目,并添加Spark和Scala的依赖。接着,编写Scala代码,通过SparkContext读取存储在HDFS上的原始数据文件,使用map和reduce…

尚硅谷redis7 49-51 redis管道之理论简介

前提redis事务和redis管道有点像,但本质上截然不同 49 redis管道之理论简介 面试题 如何优化频繁命令往返造成的性能瓶颈? redis每秒可以承受8万的写操作和接近10万次以上的读操作。每条命令都发送、处理、返回,能不能批处理一次性搞定呢…

openEuler安装MySql8(tar包模式)

操作系统版本: openEuler release 22.03 (LTS-SP4) MySql版本: 下载地址: https://dev.mysql.com/downloads/mysql/ 准备安装: 关闭防火墙: 停止防火墙 #systemctl stop firewalld.service 关闭防火墙 #systemc…

基于python,html,flask,echart,ids/ips,VMware,mysql,在线sdn防御ddos系统

详细视频:【基于python,html,flask,echart,ids/ips,VMware,mysql,在线sdn防御ddos系统-哔哩哔哩】 https://b23.tv/azUqQXe

Git:现代软件开发的基石——原理、实践与行业智慧·优雅草卓伊凡

Git:现代软件开发的基石——原理、实践与行业智慧优雅草卓伊凡 一、Git的本质与核心原理 1. 技术定义 Git是一个分布式版本控制系统(DVCS),由Linus Torvalds在2005年为管理Linux内核开发而创建。其核心是通过快照(Sna…

NLua性能对比:C#注册函数 vs 纯Lua实现

引言 在NLua开发中,我们常面临一个重要选择:将C#函数注册到Lua环境调用,还是直接在Lua中实现逻辑? 直觉告诉我们,C#作为编译型语言性能更高,但跨语言调用的开销是否会影响整体性能?本文通过基准…

【计算机网络】第2章:应用层—Web and HTTP

目录 一、Web 与 HTTP 二、总结 (一)Web 的定义与功能 (二)HTTP 协议的定义与功能 (三)HTTP 协议的核心机制 1. HTTP 请求与响应流程 2. HTTP 的连接类型 3. HTTP 的状态码 (四&#xf…

数字孪生技术赋能西门子安贝格工厂:全球智能制造标杆的数字化重构实践

在工业4.0浪潮席卷全球制造业的当下,西门子安贝格电子制造工厂(Electronic Works Amberg, EWA)凭借数字孪生技术的深度应用,构建起全球制造业数字化转型的典范。这座位于德国巴伐利亚州的“未来工厂”,通过虚实融合的数…

【图像处理基石】立体匹配的经典算法有哪些?

1. 立体匹配的经典算法有哪些? 立体匹配是计算机视觉中从双目图像中获取深度信息的关键技术,其经典算法按技术路线可分为以下几类,每类包含若干代表性方法: 1.1 基于区域的匹配算法(Local Methods) 通过…

day12 leetcode-hot100-19(矩阵2)

54. 螺旋矩阵 - 力扣(LeetCode) 1.模拟路径 思路:模拟旋转的路径 (1)设计上下左右方向控制器以及边界。比如zy1向右,zy-1向左;sx1向上,sx-1向下。上边界0,下边界hang-1&a…

密钥管理系统在存储加密场景中的深度实践:以TDE透明加密守护文件服务器安全

引言:数据泄露阴影下的存储加密革命 在数字化转型的深水区,企业数据资产正面临前所未有的安全挑战。据IBM《2025年数据泄露成本报告》显示,全球单次数据泄露事件平均成本已达465万美元,其中存储介质丢失或被盗导致的损失占比高达…

webpack打包基本配置

需要的文件 具体代码 webpack.config.js const path require(path);const HTMLWebpackPlugin require(html-webpack-plugin);const {CleanWebpackPlugin} require(clean-webpack-plugin); module.exports {mode: production,entry: "./src/index.ts",output: {…

酷派Cool20/20S/30/40手机安装Play商店-谷歌三件套-GMS方法

酷派Cool系列主打低端市场,系统无任何GMS程序,也不支持直接开启或者安装谷歌服务等功能,对于国内部分经常使用谷歌服务商店的小伙伴非常不友好。涉及机型有酷派Cool20/Cool20S /30/40/50/60等旗下多个设备。好在这些机型运行的系统都是安卓11…

LabVIEW旋转机械智能监测诊断系统

采用 LabVIEW 开发旋转机械智能监测与故障诊断系统,通过集品牌硬件与先进信号处理技术,实现旋转机械振动信号的实时采集、分析及故障预警。系统突破传统监测手段的局限性,解决了复杂工业环境下信号干扰强、故障特征提取难等问题,为…

【芯片设计中的跨时钟域信号处理:攻克亚稳态的终极指南】

在当今芯片设计中,多时钟域已成为常态。从手机SoC到航天级FPGA,不同功能模块运行在各自的时钟频率下,时钟域间的信号交互如同“语言不通”的对话,稍有不慎就会引发亚稳态、数据丢失等问题。这些隐患轻则导致功能异常,重…

接地气的方式认识JVM(一)

最近在学jvm,浮于表面的学了之后,发现jvm并没有我想象中的那么神秘,这篇文章将会用接地气的方式来说一说这些jvm的相关概念以及名词解释。 带着下面两个问题来阅读 认识了解JVM大致有什么在代码运行时的都在背后做了什么 JVM是个啥&#xf…

JAVA:Kafka 消息可靠性详解与实践样例

🧱 1、简述 Apache Kafka 是高吞吐、可扩展的流处理平台,在分布式架构中广泛应用于日志采集、事件驱动和微服务解耦场景。但在使用过程中,消息是否会丢?何时丢?如何防止丢? 是很多开发者关心的问题。 Kafka 提供了一套完整的机制来保障消息从生产者 ➜ Broker ➜ 消费…

Electron 桌面程序读取dll动态库

序幕:被GFW狙击的第一次构建 当我在工位上输入npm install electron时,控制台跳出的红色警报如同数字柏林墙上的一道弹痕: Error: connect ETIMEDOUT 104.20.22.46:443 网络问题不用愁,请移步我的另外文章进行配置:…

HTTP 与 HTTPS 深度解析:原理、实践与大型项目应用

1. HTTP 与 HTTPS 基础概念 1.1 HTTP(超文本传输协议) 定义:应用层协议,基于 TCP/IP 通信,默认端口 80 特点: 无状态协议(需 Cookie/Session 维护状态) 明文传输(易被…

API Gateway CLI 实操入门笔记(基于 LocalStack)

API Gateway CLI 实操入门笔记(基于 LocalStack) Categories: Cloud Google Rank Proof: No Last edited time: May 26, 2025 4:18 AM Status: Early draft Tags: aws 主要先简单的走一下流程,熟悉一下在 terminal 操作 API Gateway local…