【图像处理基石】立体匹配的经典算法有哪些?

news2025/6/1 7:10:21

在这里插入图片描述

1. 立体匹配的经典算法有哪些?

立体匹配是计算机视觉中从双目图像中获取深度信息的关键技术,其经典算法按技术路线可分为以下几类,每类包含若干代表性方法:

1.1 基于区域的匹配算法(Local Methods)

通过比较图像块的相似性确定对应点,计算简单但易受纹理、光照影响。

  1. 块匹配(Block Matching)
    • 原理:以某像素为中心取固定大小的窗口(如5×5),在另一图像的极线范围内搜索相似窗口,窗口相似度决定匹配代价。
    • 变种
      • SAD(Sum of Absolute Differences):计算两窗口像素灰度差的绝对值之和,计算高效但对噪声敏感。
      • SSD(Sum of Squared Differences):计算灰度差的平方和,放大噪声影响但适合高斯噪声场景。
      • NCC(Normalized Cross-Correlation):归一化互相关,通过标准化处理消除光照影响,鲁棒性更强。
  2. ** Census 变换**
    • 原理:将中心像素周围的灰度值转化为二进制编码(如大于中心像素记为1,否则为0),通过汉明距离衡量编码相似度,对光照变化不敏感。

1.2 基于特征的匹配算法(Feature-Based Methods)

先提取图像中的显著特征(如角点、边缘),再对特征点进行匹配,减少计算量但依赖特征质量。

  1. 角点匹配(如Harris角点)
    • 步骤:用Harris等角点检测器提取特征点,再通过特征点邻域灰度或梯度信息(如描述子)进行匹配。
  2. SIFT(尺度不变特征变换)与SURF
    • 原理:提取尺度、旋转不变的特征点,生成局部梯度方向直方图作为描述子,通过最近邻匹配(NN)或双向匹配(NNDR)确定对应点。
    • 特点:对尺度、旋转、光照变化鲁棒,但计算复杂度高,常用于非实时场景。

1.3 基于相位的匹配算法(Phase-Based Methods)

利用图像的相位信息(而非幅值)进行匹配,对噪声和光照不敏感,但需多尺度分析。

  • Gabor滤波器匹配
    • 原理:通过Gabor滤波器组提取多尺度、多方向的相位信息,利用相位一致性(Phase Congruency)确定匹配点,抗噪性强但计算复杂。

1.4 全局优化算法(Global Optimization Methods)

通过构建能量函数并全局优化(如最小化视差不连续代价),获取更平滑的视差图。

  1. 动态规划(Dynamic Programming, DP)
    • 原理:将一维极线匹配问题转化为路径优化问题,通过动态规划寻找最小代价路径,但二维场景中存在“跨扫描线不连续”问题。
  2. 图割(Graph Cut)与置信传播(Belief Propagation, BP)
    • 图割:将立体匹配建模为马尔可夫随机场(MRF),通过最小化能量函数(数据项+平滑项)求解视差,利用最大流最小割算法高效优化。
    • 置信传播:通过迭代传递节点间的置信度信息,逐步收敛到全局最优视差,适合复杂场景但计算量较大。
  3. 半全局匹配(Semi-Global Matching, SGM)
    • 原理:结合局部匹配与全局优化,通过多方向路径(如8邻域)的代价聚合近似全局优化,平衡精度与效率,是经典实时算法(如KITTI数据集常用基线方法)。

1.5 早期经典理论与其他方法

  1. Marr-Poggio算法
    • 历史地位:计算机视觉早期理论,基于零交叉点(边缘)匹配,提出“唯一性约束”“连续性约束”等立体匹配基本假设。
  2. 基于边缘的匹配(Edge-Based Matching)
    • 原理:先提取图像边缘,再通过边缘的几何结构(如长度、角度)进行匹配,适用于低纹理场景。

1.6 总结:经典算法对比

算法类型代表方法优点缺点适用场景
区域匹配SAD/NCC计算快、实现简单弱纹理区域易误匹配实时性要求高的场景
特征匹配SIFT鲁棒性强、适合大视角变化计算慢、需预处理非实时、复杂场景
全局优化图割/SGM视差平滑、精度高计算复杂度高(图割)/参数敏感(SGM)高精度三维重建
相位匹配Gabor滤波器抗噪性强多尺度计算复杂噪声敏感场景

这些算法奠定了立体匹配的理论基础,后续深度学习方法(如GC-Net、PSMNet)多基于经典算法的约束条件(如视差连续性)进行改进。理解经典算法有助于深入掌握立体视觉的核心问题与优化思路。

2. 用python实现基于特征的立体匹配算法

下面是一个基于OpenCV的Python实现,展示了如何使用SIFT特征和RANSAC算法进行立体匹配并计算视差图。

import cv2
import numpy as np
import matplotlib.pyplot as plt

def feature_based_stereo_matching(img_left_path, img_right_path, min_matches=10):
    # 读取图像
    img_left = cv2.imread(img_left_path, cv2.IMREAD_GRAYSCALE)
    img_right = cv2.imread(img_right_path, cv2.IMREAD_GRAYSCALE)
    
    if img_left is None or img_right is None:
        print("Error: Could not load images.")
        return None, None, None
    
    # 初始化SIFT检测器
    sift = cv2.SIFT_create()
    
    # 检测关键点和计算描述符
    kp1, des1 = sift.detectAndCompute(img_left, None)
    kp2, des2 = sift.detectAndCompute(img_right, None)
    
    # 使用FLANN匹配器
    FLANN_INDEX_KDTREE = 1
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    
    # 应用比率测试以筛选良好匹配点
    good_matches = []
    for m, n in matches:
        if m.distance < 0.7 * n.distance:
            good_matches.append(m)
    
    if len(good_matches) < min_matches:
        print(f"Error: Not enough matches are found - {len(good_matches)}/{min_matches}")
        return None, None, None
    
    # 提取匹配点的坐标
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    
    # 使用RANSAC算法估计基础矩阵
    F, mask = cv2.findFundamentalMat(src_pts, dst_pts, cv2.FM_RANSAC, 3, 0.99)
    
    # 只保留内点
    src_pts = src_pts[mask.ravel() == 1]
    dst_pts = dst_pts[mask.ravel() == 1]
    
    # 计算单应性矩阵进行图像校正(简化版)
    h1, w1 = img_left.shape
    h2, w2 = img_right.shape
    _, H1, H2 = cv2.stereoRectifyUncalibrated(src_pts, dst_pts, F, imgSize=(w1, h1))
    
    # 校正图像
    img_left_rectified = cv2.warpPerspective(img_left, H1, (w1, h1))
    img_right_rectified = cv2.warpPerspective(img_right, H2, (w2, h2))
    
    # 使用BM算法计算视差图
    stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
    disparity = stereo.compute(img_left_rectified, img_right_rectified)
    
    # 归一化视差图以便显示
    disparity_normalized = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
    
    return img_left_rectified, img_right_rectified, disparity_normalized

# 示例用法
if __name__ == "__main__":
    # 请替换为你的图像路径
    img_left_path = "left_image.jpg"
    img_right_path = "right_image.jpg"
    
    img_left_rectified, img_right_rectified, disparity = feature_based_stereo_matching(img_left_path, img_right_path)
    
    if img_left_rectified is not None:
        # 显示结果
        plt.figure(figsize=(15, 10))
        
        plt.subplot(221)
        plt.imshow(cv2.cvtColor(cv2.imread(img_left_path), cv2.COLOR_BGR2RGB))
        plt.title('原始左图')
        plt.axis('off')
        
        plt.subplot(222)
        plt.imshow(cv2.cvtColor(cv2.imread(img_right_path), cv2.COLOR_BGR2RGB))
        plt.title('原始右图')
        plt.axis('off')
        
        plt.subplot(223)
        plt.imshow(img_left_rectified, cmap='gray')
        plt.title('校正后左图')
        plt.axis('off')
        
        plt.subplot(224)
        plt.imshow(disparity, cmap='jet')
        plt.title('视差图')
        plt.axis('off')
        
        plt.tight_layout()
        plt.show()

这个实现包含以下主要步骤:

  1. 特征提取:使用SIFT算法检测关键点并计算描述符
  2. 特征匹配:使用FLANN匹配器和比率测试筛选可靠匹配点
  3. 几何验证:使用RANSAC算法估计基础矩阵并过滤外点
  4. 图像校正:计算单应性矩阵并校正图像,使对应点位于同一水平线上
  5. 视差计算:使用块匹配算法(BM)计算校正后图像的视差图
  6. 结果可视化:显示原始图像、校正图像和视差图

你可以通过调整参数来优化匹配效果,例如:

  • 调整SIFT的关键点检测参数
  • 修改FLANN匹配器的搜索参数
  • 调整BM算法的numDisparities和blockSize参数
  • 尝试不同的视差计算算法如SGBM

使用时请确保已安装OpenCV和matplotlib库,并准备好一对立体图像。

3. 常用的立体匹配数据集有哪些?

以下是一些广泛用于测试立体匹配算法的公开数据集,涵盖不同场景、分辨率和复杂度,适合学术研究和工业应用:

3.1 通用场景经典数据集

1. KITTI(自动驾驶场景)
  • 特点
    • 真实街景数据,包含车载双目摄像头采集的图像对,同步激光雷达点云作为高精度地面真值。
    • 场景覆盖城市、乡村、高速公路,包含动态车辆、行人及复杂光照条件,适合评估算法在真实环境中的鲁棒性。
    • 2020年后更新的KITTI-360新增360度激光扫描和更多传感器数据,支持更复杂的三维重建任务。
  • 数据规模
    • 2012版:194对训练图像,195对测试图像,分辨率1242×375。
    • 2015版:200对训练图像,200对测试图像,分辨率1242×375。
  • 评估工具
    • 官方在线评估平台(cvlibs.net),支持视差误差(D1-all)、遮挡区域误差等指标。
  • 适用场景:自动驾驶、实时立体匹配算法验证。
2. Middlebury(高精度学术基准)
  • 特点
    • 由结构光扫描生成高精度视差真值,包含低纹理、遮挡、深度不连续等挑战性场景。
    • 数据集分为不同难度等级(如Teddy、Cones),并提供无纹理区域、遮挡区域的掩码,便于细粒度评估。
    • 2024年更新后新增高分辨率图像和多视角数据,支持深度学习算法测试。
  • 数据规模
    • 2001版:6组平面场景。
    • 2014版:12组复杂场景,分辨率最高1600×1200。
  • 评估工具
    • 在线评估系统(vision.middlebury.edu/stereo),支持均方根误差(RMSE)、错误像素比例(D1)等指标。
  • 适用场景:算法精度对比、学术论文基线测试。
3. ETH3D(多视角高分辨率)
  • 特点
    • 包含室内外复杂场景(如建筑物、自然景观)的多视角图像,由DSLR相机和移动设备采集,分辨率高达300万像素。
    • 地面真值通过激光扫描仪生成,支持密集点云和深度图评估。
  • 数据规模
    • 47个灰度图场景(27训练,20测试),平均分辨率3×10⁵像素。
  • 评估工具
    • 官方提供的脚本可计算视差误差和三维重建精度。
  • 适用场景:多视图立体匹配、高分辨率场景分析。

3.2 合成与大规模训练数据集

1. SceneFlow(合成场景流)
  • 特点
    • 由合成图像生成,包含3万多对训练图像,提供场景流(动态物体运动)的地面真值,适合深度学习模型预训练。
    • 场景覆盖交通、室内、自然等,可模拟不同光照和动态物体运动。
  • 数据规模
    • 35,454对训练图像,分辨率1242×375。
  • 评估工具
    • 官方提供的Python工具包支持视差和场景流误差计算。
  • 适用场景:深度立体匹配网络训练、动态场景算法开发。
2. BlendedMVS(多视图合成)
  • 特点
    • 包含113个真实场景的合成多视图图像,覆盖建筑、雕塑等,提供稠密点云和纹理网格。
    • 支持多分辨率数据(低分辨率768×576,高分辨率2048×1536),适合训练多视图立体匹配模型。
  • 数据规模
    • 17k训练样本,高分辨率数据量达156GB。
  • 评估工具
    • 官方提供MVSNet格式数据和评估脚本。
  • 适用场景:多视图立体匹配、三维重建算法研究。

3.3 特殊场景与挑战数据集

1. Tanks and Temples(复杂户外场景)
  • 特点
    • 包含14个高分辨率室外场景(如雕塑、大型建筑),测试集分为中级和高级难度,覆盖复杂几何结构和光照条件。
    • 提供激光扫描点云作为真值,适合评估算法在极端场景下的性能。
  • 数据规模
    • 训练集7个场景,测试集14个场景,分辨率最高4096×3072。
  • 评估工具
    • 官方提供的3D重建评估工具(如COLMAP)可计算点云完整性和准确性。
  • 适用场景:大规模三维重建、复杂场景立体匹配。
2. UAVStereo(无人机低空场景)
  • 特点
    • 首个无人机低空场景立体匹配数据集,包含3.4万对图像,覆盖城市、乡村、森林等场景,提供多分辨率数据(0.5m至20m地面采样距离)。
    • 适合测试算法在大视差、低纹理区域的表现。
  • 数据规模
    • 34,000+立体图像对,分辨率最高4096×3072。
  • 评估工具
    • 官方提供视差图和点云真值,支持误差计算。
  • 适用场景:无人机导航、遥感图像分析。
3. UWStereo(水下场景)
  • 特点
    • 合成水下立体数据集,包含珊瑚、沉船、工业机器人等场景,模拟水下低可见度、散射等复杂环境。
    • 提供密集视差注释,适合研究水下机器人视觉算法。
  • 数据规模
    • 29,568对立体图像,分辨率1920×1080。
  • 评估工具
    • 官方提供的评估脚本可计算水下场景的匹配误差。
  • 适用场景:水下机器人、海洋勘探。

3.4 其他特色数据集

1. DTU(室内多视图)
  • 特点
    • 室内物体多视图数据集,包含128个场景,每个场景49视角,提供激光扫描点云作为真值,适合多视图立体匹配研究。
  • 数据规模
    • 128个场景,分辨率1600×1200。
  • 评估工具
    • 官方提供的MVS评估工具支持点云精度计算。
  • 适用场景:多视图几何、三维重建。
2. ISPRS(遥感图像)
  • 特点
    • 基于航空影像的立体匹配数据集,包含核线校正图像和LiDAR点云,适合遥感测绘应用。
  • 数据规模
    • 20幅图像,分辨率11位深度,地面采样距离8厘米。
  • 评估工具
    • 官方提供的LiDAR点云可用于验证视差精度。
  • 适用场景:遥感测绘、地理信息系统。

3.5 数据集对比与选择建议

数据集场景类型分辨率地面真值精度动态物体适用算法类型
KITTI自动驾驶街景1242×375激光雷达点云实时算法、深度学习
Middlebury高精度学术场景最高1600×1200结构光扫描传统算法、精度对比
ETH3D多视角复杂场景3×10⁵像素激光扫描多视图匹配、高分辨率分析
SceneFlow合成动态场景1242×375合成标注深度学习预训练、场景流
Tanks and Temples大型户外4096×3072激光扫描复杂场景三维重建
UAVStereo无人机低空4096×3072多传感器融合遥感、低空导航
UWStereo水下环境1920×1080合成标注水下机器人、海洋探测

下载与使用资源

  • KITTI:cvlibs.net/datasets/kitti
  • Middlebury:vision.middlebury.edu/stereo
  • ETH3D:eth3d.net
  • SceneFlow:lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlow
  • BlendedMVS:github.com/YoYo000/blendedmvs
  • Tanks and Temples:tanksandtemples.org
  • UAVStereo:github.com/HIT-SC-Lab/UAVStereo
  • UWStereo:selectdataset.com/dataset/9401eadce5b9558d956bb568def9449a

根据算法需求选择合适的数据集:

  • 实时性优先:KITTI、UAVStereo。
  • 高精度对比:Middlebury、ETH3D。
  • 深度学习训练:SceneFlow、BlendedMVS。
  • 复杂场景挑战:Tanks and Temples、UWStereo。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2392236.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

day12 leetcode-hot100-19(矩阵2)

54. 螺旋矩阵 - 力扣&#xff08;LeetCode&#xff09; 1.模拟路径 思路&#xff1a;模拟旋转的路径 &#xff08;1&#xff09;设计上下左右方向控制器以及边界。比如zy1向右&#xff0c;zy-1向左&#xff1b;sx1向上&#xff0c;sx-1向下。上边界0&#xff0c;下边界hang-1&a…

密钥管理系统在存储加密场景中的深度实践:以TDE透明加密守护文件服务器安全

引言&#xff1a;数据泄露阴影下的存储加密革命 在数字化转型的深水区&#xff0c;企业数据资产正面临前所未有的安全挑战。据IBM《2025年数据泄露成本报告》显示&#xff0c;全球单次数据泄露事件平均成本已达465万美元&#xff0c;其中存储介质丢失或被盗导致的损失占比高达…

webpack打包基本配置

需要的文件 具体代码 webpack.config.js const path require(path);const HTMLWebpackPlugin require(html-webpack-plugin);const {CleanWebpackPlugin} require(clean-webpack-plugin); module.exports {mode: production,entry: "./src/index.ts",output: {…

酷派Cool20/20S/30/40手机安装Play商店-谷歌三件套-GMS方法

酷派Cool系列主打低端市场&#xff0c;系统无任何GMS程序&#xff0c;也不支持直接开启或者安装谷歌服务等功能&#xff0c;对于国内部分经常使用谷歌服务商店的小伙伴非常不友好。涉及机型有酷派Cool20/Cool20S /30/40/50/60等旗下多个设备。好在这些机型运行的系统都是安卓11…

LabVIEW旋转机械智能监测诊断系统

采用 LabVIEW 开发旋转机械智能监测与故障诊断系统&#xff0c;通过集品牌硬件与先进信号处理技术&#xff0c;实现旋转机械振动信号的实时采集、分析及故障预警。系统突破传统监测手段的局限性&#xff0c;解决了复杂工业环境下信号干扰强、故障特征提取难等问题&#xff0c;为…

【芯片设计中的跨时钟域信号处理:攻克亚稳态的终极指南】

在当今芯片设计中&#xff0c;多时钟域已成为常态。从手机SoC到航天级FPGA&#xff0c;不同功能模块运行在各自的时钟频率下&#xff0c;时钟域间的信号交互如同“语言不通”的对话&#xff0c;稍有不慎就会引发亚稳态、数据丢失等问题。这些隐患轻则导致功能异常&#xff0c;重…

接地气的方式认识JVM(一)

最近在学jvm&#xff0c;浮于表面的学了之后&#xff0c;发现jvm并没有我想象中的那么神秘&#xff0c;这篇文章将会用接地气的方式来说一说这些jvm的相关概念以及名词解释。 带着下面两个问题来阅读 认识了解JVM大致有什么在代码运行时的都在背后做了什么 JVM是个啥&#xf…

JAVA:Kafka 消息可靠性详解与实践样例

🧱 1、简述 Apache Kafka 是高吞吐、可扩展的流处理平台,在分布式架构中广泛应用于日志采集、事件驱动和微服务解耦场景。但在使用过程中,消息是否会丢?何时丢?如何防止丢? 是很多开发者关心的问题。 Kafka 提供了一套完整的机制来保障消息从生产者 ➜ Broker ➜ 消费…

Electron 桌面程序读取dll动态库

序幕&#xff1a;被GFW狙击的第一次构建 当我在工位上输入npm install electron时&#xff0c;控制台跳出的红色警报如同数字柏林墙上的一道弹痕&#xff1a; Error: connect ETIMEDOUT 104.20.22.46:443 网络问题不用愁&#xff0c;请移步我的另外文章进行配置&#xff1a;…

HTTP 与 HTTPS 深度解析:原理、实践与大型项目应用

1. HTTP 与 HTTPS 基础概念 1.1 HTTP&#xff08;超文本传输协议&#xff09; 定义&#xff1a;应用层协议&#xff0c;基于 TCP/IP 通信&#xff0c;默认端口 80 特点&#xff1a; 无状态协议&#xff08;需 Cookie/Session 维护状态&#xff09; 明文传输&#xff08;易被…

API Gateway CLI 实操入门笔记(基于 LocalStack)

API Gateway CLI 实操入门笔记&#xff08;基于 LocalStack&#xff09; Categories: Cloud Google Rank Proof: No Last edited time: May 26, 2025 4:18 AM Status: Early draft Tags: aws 主要先简单的走一下流程&#xff0c;熟悉一下在 terminal 操作 API Gateway local…

数据分析案例-基于红米和华为手机的用户评论分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

深度学习入门:从零搭建你的第一个神经网络

深度学习入门&#xff1a;从零搭建你的第一个神经网络 系统化学习人工智能网站&#xff08;收藏&#xff09;&#xff1a;https://www.captainbed.cn/flu 文章目录 深度学习入门&#xff1a;从零搭建你的第一个神经网络摘要引言第一章&#xff1a;神经网络基础原理1.1 神经元…

【Python办公】Excel简易透视办公小工具

目录 专栏导读1. 背景介绍2. 功能介绍3. 库的安装4. 界面展示5. 使用方法6. 实际应用场景7. 优化方向完整代码总结专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 👍 该系…

Linux系列-2 Shell常用命令收集

背景 本文用于收集Linux常用命令(基于Centos7)&#xff0c;是一个持续更新的博客&#xff0c;建议收藏&#xff0c;编写shell时遇到问题可以随时查阅。 1.Shell类型 shell是用C语言编写的程序&#xff0c;作为命令解释器连接着用户和操作系统内核。常见的shell有sh(Bourne She…

MATLAB使用多个扇形颜色变化表示空间一个点的多种数值

MATLAB使用多个扇形颜色变化表示空间一个点的多种数值 excel中表格中数据格式&#xff0c;多行 lonlatdata1data2data3117380.11100 clear;close all; figure(Position,[100 100 800 800]);num_points 14; [num,txt,raw] xlsread(test.xlsx); x num(:,1); y num(:,2);d…

CAD精简多段线顶点、优化、删除多余、重复顶点——CAD c#二次开发

附部分代码如下: public static void Pl精简(){Document doc Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument;Database db doc.Database;Editor ed doc.Editor;var plOrigon db.SelectCurve("\n选择多段线&#xff1a;");…

输电线路的“智慧之眼”:全天候可视化监测如何赋能电网安全运维

在电力需求持续攀升、电网规模日益庞大的今天&#xff0c;输电线路的安全稳定运行面临着前所未有的挑战。线路跨越地形复杂多变&#xff0c;尤其是在偏远山区、铁路沿线及恶劣天气条件下&#xff0c;传统的人工巡检方式显得力不从心——效率低、风险高、覆盖有限。如何实现更智…

两阶段法目标检测发展脉络

模式识别期末展示大作业&#xff0c;做个记录&#xff0c;希望大家喜欢。 R-CNN Fast R-CNN R-FCN 整个过程可以分解为以下几个步骤&#xff1a; 输入图像 (image) 和初步特征提取 (conv, feature maps)&#xff1a; 首先&#xff0c;输入一张原始图像&#xff0c;经过一系列…

小白的进阶之路系列之六----人工智能从初步到精通pytorch数据集与数据加载器

本文将介绍以下内容: 数据集与数据加载器 数据迁移 如何建立神经网络 数据集与数据加载器 处理数据样本的代码可能会变得混乱且难以维护;理想情况下,我们希望我们的数据集代码与模型训练代码解耦,以获得更好的可读性和模块化。PyTorch提供了两个数据原语:torch.utils…