mongodb语法$vlookup性能分析

news2025/5/30 15:23:18

1 场景描述

mongodb有两个表department和user表,

department表有_id,name,level,表有记录169w条

user表有_id,name,department_id,表有记录169w条,department_id没有创建索引,department_id是department的_id。

现在需要写个vlooup方法,查询level下面有多少用户。

2 user表$vlookup表department写法

db.user.aggregate([
  // 连接 department 表获取 level 信息
  {
    $lookup: {
      from: "department",       // 关联的目标表
      localField: "department_id", // user 表的关联字段
      foreignField: "_id",      // department 表的关联字段
      as: "dept"                // 关联结果的别名
    }
  },
  // 展开 dept 数组(每个用户对应一个部门)
  {
    $unwind: "$dept"
  },
  // 按层级分组并统计用户数量
  {
    $group: {
      _id: "$dept.level",       // 按部门层级分组
      userCount: { $sum: 1 },   // 统计每个层级的用户数
      departmentNames: { $addToSet: "$dept.name" } // 收集部门名称
    }
  }
], { allowDiskUse: true });

3 department表$vlookup表user写法

db.department.aggregate([
  // 步骤1:关联 user 表(类似 VLOOKUP)
  {
    $lookup: {
      from: "user",                   // 关联的集合名称(user 表)
      localField: "_id",              // department 表的关联字段(_id)
      foreignField: "department_id",  // user 表的关联字段(department_id)
      as: "users"                     // 将匹配的 user 文档存入 users 数组
    }
  },
  // 步骤2:计算每个 department 的用户数
  {
    $addFields: {
      user_count: { $size: "$users" } // 通过数组长度获取用户数
    }
  },
  // 步骤3:按 level 分组统计总用户数
  {
    $group: {
      _id: "$level",                  // 按 level 分组
      total_users: { $sum: "$user_count" } // 累加用户数
    }
  }
], { allowDiskUse: true });

user表$vlookup表department写法  速度快于 department表$vlookup表user写法

为什么呢?

user表$vlookup表department写法:

先读取user表数据

读取user表字段department_id值

根据department_id值去user表_id关联查找,user表的_id有索引,所以速度快

4 将user表的数据分别切割成10w、50w、100w、150w

// 步骤 1:将符合条件的 50w 条数据写入新表
db.user.aggregate([
  { $match: { /* 筛选条件,如:age > 30 */ } }, // 可选:添加筛选条件
  { $limit: 1500000 },                            // 限制迁移数量
  { $out: "user150" }                           // 写入新表
], { allowDiskUse: true });                      // 允许磁盘临时存储

5 分别执行user表$vlookup表department写法sql,看看执行时间

user表10w   关联department表169w耗时10098ms

user表50w   关联department表169w耗时76067ms

user表100w 关联department表169w耗时174097ms

user表150w 关联department表169w耗时297307ms

假如读取一条user表耗时x,根据索引_id读取department耗时是y

100000x+100000y=10098

500000x+500000y=76067

1000000x+1000000y=174097

1500000x+1500000y=297307

处理1条数据大概需要0.1877ms

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2386708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

晶圆隐裂检测提高半导体行业效率

半导体行业是现代制造业的核心基石,被誉为“工业的粮食”,而晶圆是半导体制造的核心基板,其质量直接决定芯片的性能、良率和可靠性。晶圆隐裂检测是保障半导体良率和可靠性的关键环节。 晶圆检测 通过合理搭配工业相机与光学系统&#xff0c…

在 LangChain 中集成 Mem0 记忆系统教程

目录 简介环境准备基础配置核心组件说明1. 提示模板设计2. 上下文检索3. 响应生成4. 记忆存储 工作流程解析使用示例关键特性完整代码与效果 简介 Mem0 是一个强大的记忆系统,可以帮助 AI 应用存储和检索历史对话信息。本教程将介绍如何在 LangChain 应用中集成 Me…

华润电力招聘认知能力测评及性格测评真题题库考什么?

华润电力招聘测评包含逻辑推理、数字推理、语言理解三大类型的问卷。共计58题。测评限时60分钟。其中逻辑推理、数字推理、语言推理分别限时20分钟,如逾时未完成相关测试,测试将自动终止,请注意测评时间。为了确保测评的连贯性,建…

Maven Profile在插件与依赖中的深度集成

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

手机平板等设备租赁行业MDM方案解析

目录 引言:MDM 在租赁行业的重要性日益凸显 用户场景:租赁公司面临的主要挑战 1. 设备丢失、逾期未还 2. 手动配置和恢复效率低 3. 非授权使用频繁 4. 时区设置混乱影响运维 5. 缺乏实时监管能力 EasyControl MDM:租赁设备的远程管控…

如何调试CATIA CAA程序导致的CATIA异常崩溃问题

问题背景:我采用CATIA CAA编写了一个界面的小程序,功能运行成功,但是每次运行完,关闭CATIA的时候,都会弹出这个对话框,这个对话框的意思是CATIA运行崩溃,点击确定后,CATIA就会意外关…

SQL查询效率以及索引设计

1. SQL 查询效率与数据库缓冲池机制 1.1. 数据库缓冲池(Buffer Pool) 磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内…

day37打卡

知识点回顾:浙大疏锦行 过拟合的判断:测试集和训练集同步打印指标模型的保存和加载 仅保存权重保存权重和模型保存全部信息checkpoint,还包含训练状态 早停策略 作业:对信贷数据集训练后保存权重,加载权重后继续训练50…

分布式缓存:证明分布式系统的 CAP 理论

文章目录 Pre一、分布式系统背景与特点二、CAP 三要素详解三、CAP 定理的反证证明四、CP 架构与 AP 架构对比典型场景 五、CAP 理论在系统设计中的应用六、总结 Pre 分布式缓存:CAP 理论在实践中的误区与思考 分布式缓存:BASE理论实践指南 分布式 - 从…

软件设计师“面向对象设计”真题考点分析——求三连

一、考点分值占比与趋势分析 综合知识历年考察统计 年份考题数分值占比考察重点2018334%继承类型、设计原则2019445.3%多态实现、类关系2020556.7%设计模式应用、接口隔离2021334%消息通信、封装特性2022668%开闭原则、组合模式2023556.7%模板方法、适配器模式2024445.3%单一…

AI大模型学习二十八、ACE-Step:生成式AI音乐大模型简介与安装(一)

一、说明 先来一首创作的歌: 在大模型和生成式AI模型大规模发达的今天,利用大模型生成音乐也是其中一个重要的发展方向。今天我们就介绍一个这样的音乐生成模型ACE-Step,可基于关键字和歌词生成歌曲;基于歌曲生成伴奏等等功能。 …

接口性能测试-工具JMeter的学习

接口登录链接http://111.230.19.204:8080/blog_login.html 一、JMeter基本使用流程 1、启动Jmeter 2、在“测试计划”下添加线程组 3、在“线程组”下添加“HTTP”取样器 4、填写“HTTP请求”的相关请求数据 5、在“线程组”下添加“查看结果树”监听器 6、点击“启动”按钮…

python如何离线安装pandas,numpy

1.首先在有网的电脑上正常安装python(和离线环境一样的版本) 然后 pip install pandas (不嫌麻烦的话也可以自己手动去pandas PyPI​​​​​​​ 一个个下载) 安装好后导出相关包,使用如下指令 2.然后相关依赖包就…

Java Swing 自定义JOptionPane

运行后的样式 import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;public class demoB {public static void main(String[] args) {SwingUtilities.invokeLater(() -> {JFrame jf new JFrameDemo();jf.se…

【图像大模型】Stable Diffusion XL:下一代文本到图像生成模型的技术突破与实践指南

Stable Diffusion XL:下一代文本到图像生成模型的技术突破与实践指南 一、架构设计与技术演进1.1 核心架构革新1.2 关键技术突破1.2.1 双文本编码器融合1.2.2 动态扩散调度 二、系统架构解析2.1 完整生成流程2.2 性能指标对比 三、实战部署指南3.1 环境配置3.2 基础…

C 语言指针之手写内存深度剖析与手写库函数:带你从0开始手撸库 附录1.5 万字实战笔记

一、指针入门:从野指针到空指针 1.1 野指针的第一次暴击:沃日 哪里来的Segmentation Fault ?????? 刚学指针时写过一段让我及其楠甭的代码,我x了xx的,最后才发现是为…

C#高级:Winform桌面开发中CheckedListBox的详解

一、基础设置 单击触发选择效果&#xff1a;需要选择下面这个为True 二、代码实现 1.设置数据源 /// <summary> /// 为CheckBoxList设置数据源 /// </summary> /// <param name"checkedListBox1"></param> /// <param name"data&…

AI学习笔记二十八:使用ESP32 CAM和YOLOV5实现目标检测

若该文为原创文章&#xff0c;转载请注明原文出处。 最近在研究使用APP如何显示ESP32 CAM的摄像头数据&#xff0c;看到有人实现把ESP32 CAM的数据流上传&#xff0c;通过YOLOV5来检测&#xff0c;实现拉流推理&#xff0c;这里复现一下。 一、环境 arduino配置esp32-cam开发环…

免费分享50本web全栈学习电子书

最近搞到一套非常不错的 Web 全栈电子书合集&#xff0c;整整 50 本&#xff0c;都是epub电子书格式&#xff0c;相当赞&#xff01;作为一个被期末大作业和项目 ddl 追着跑的大学生&#xff0c;这套书真的救我狗命&#xff01; 刚接触 Web 开发的时候&#xff0c;我天天对着空…

【prometheus+Grafana篇】基于Prometheus+Grafana实现MySQL数据库的监控与可视化

&#x1f4ab;《博主主页》&#xff1a; &#x1f50e; CSDN主页 &#x1f50e; IF Club社区主页 &#x1f525;《擅长领域》&#xff1a;擅长阿里云AnalyticDB for MySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控&#xff1b;并对SQLserver、NoSQL(MongoDB)有了…