【Linux网络】网络层

news2025/5/20 5:43:40

网络层

在复杂的网络环境中确定一个合适的路径

IP 协议

在这里插入图片描述

  • IPV4 点分十进制[0,255].[0,255].[0,255].[0,255]
  • IPV6

IP地址=目标网格+目标主机

基本概念

  • 主机:配有IP地址,但是不进行路由控制的设备;
  • 路由器:即配有IP地址,又能进行路由控制;
  • 节点:主机和路由器的统称。

两个问题

  • 路径选择问题? 网络层解决
  • 如何将数据交给路由器? 局域网通信问题,数据链路层

IP核心作用:
就是把数据包跨网络转发到主机上。
丢包的话,IP协议并不关心,由应用层TCP解决

TCP(策略问题)+IP协议(具体转发),共同解决主机距离变长的时候的核心问题。

协议头格式

在这里插入图片描述

IP 协议头部字段

  • 4 位版本号(version):指定 IP 协议的版本,对于 IPv4 来说,就是 4。
  • 4 位头部长度(header length):IP 头部的长度是多少个 32bit,也就是 length 4 的字节数。4bit 表示最大的数字是 15,因此 IP 头部最大长度是 60 字节。
  • 8 位服务类型(Type Of Service):3 位优先权字段(已经弃用),4 位 TOS 字段,和 1 位保留字段(必须置为 0) 。4 位 TOS 分别表示:最小延时,最大吞吐量,最高可靠性,最小成本。这四者相互冲突,只能选择一个。对于 ssh/telnet 这样的应用程序,最小延时比较重要;对于 ftp 这样的程序,最大吞吐量比较重要。
  • 16 位总长度(total length):IP 数据报整体占多少个字节。
  • 16 位标识(id):唯一的标识主机发送的报文。如果 IP 报文在数据链路层被分片了,那么每一个片里面的这个 id 都是相同的。
  • 3 位标志字段:第一位保留(保留的意思是现在不用,但是还没想好说不定以后要用到)。第二位置为 1 表示禁止分片,这时候如果报文长度超过 MTU,IP 模块就会丢弃报文。第三位表示“更多分片”,如果分片了的话,最后一个分片置为 0,其他是 1。类似于一个结束标记。
  • 13 位分片偏移(framegament offset):是分片相对于原始 IP 报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 8 得到的。因此,除了最后一个报文之外,其他报文的长度必须是 8 的整数倍(否则报文就不连续了)。
  • 8 位生存时间(Time To Live, TTL):数据报到达目的地的最大报文跳数。一般是 64。每次经过一个路由,TTL -= 1,一直减到 0 还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环。
  • 8 位协议表示上层协议的类型
  • 16 位头部校验和:使用 CRC 进行校验,来鉴别头部是否损坏。
  • 32 位源地址和 32 位目标地址:表示发送端和接收端。
  • 选项字段(不定长,最多 40 字节):略

网段划分(重要)

IP 地址分为两个部分,网络号和主机号。

  • 网络号:保证相互连接的两个网段具有不同的标识。
  • 主机号:同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号。

问题

  • 子网内的IP地址,都是从哪里来的?谁给的?
    • 路由器是子网中第一个入网设备,路由器具有构建子网的能力,可以分配IP地址
  • 子网划分,为什么?
    • 至此网络建设,本质上提高查找效率(查找的本质就是淘汰)

在这里插入图片描述

不同的子网其实就是把网络号相同的主机放到一起

如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号一致,但是主机号必须不能和子网中的其他主机重复。

通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的 IP 地址都不相同。

手动管理子网内的 IP 是一个相当麻烦的事情。

有一种技术叫做 DHCP,能够自动的给子网内新增主机节点分配 IP 地址,避免了手动管理 IP 的不便。一般的路由器都带有 DHCP 功能,因此路由器也可以看做一个 DHCP 服务器。

过去曾经提出一种划分网络号和主机号的方案,把所有 IP 地址分为五类:

  • A 类:0.0.0.0 到 127.255.255.255,7 位网络号,24 位主机号。
  • B 类:128.0.0.0 到 191.255.255.255,14 位网络号,16 位主机号。
  • C 类:192.0.0.0 到 223.255.255.255,21 位网络号,8 位主机号。
  • D 类:224.0.0.0 到 239.255.255.255,多播组号。
  • E 类:240.0.0.0 到 247.255.255.255,留待后用 。
    在这里插入图片描述

随着 Internet 的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请 B 类网络地址,导致 B 类地址很快就分配完了,而 A 类却浪费了大量地址。

例如,申请了一个 B 类地址,理论上一个子网内能允许 6 万 5 千多个主机,A 类地址的子网内的主机数更多。然而实际网络架设中,不会存在一个子网内有这么多的情况,因此大量的 IP 地址都被浪费掉了。

针对这种情况提出了新的划分方案,称为 CIDR(Classless Interdomain Routing):

  • 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号。
  • 子网掩码也是一个 32 位的正整数,通常用一串 “0” 来结尾。
  • 将 IP 地址和子网掩码进行 “按位与” 操作,得到的结果就是网络号。
  • 网络号和主机号的划分与这个 IP 地址是 A 类、B 类还是 C 类无关。

划分子网的例子1

IP 地址140.252.20.68(8C FC 14 44)
子网掩码255.255.255.0(FF FF FF 00)
网络号140.252.20.0(8C FC 14 00)
网络地址范围140.252.20.0~140.252.20.255(8C FC 14 00)

划分子网的例子2

IP 地址140.252.20.68(8C FC 14 44)
子网掩码255.255.255.240(FF FF FF F0)
网络号140.252.20.64(8C FC 14 F0)
网络地址范围140.252.20.64~140.252.20.79(8C FC 14 F0)

可见,IP 地址与子网掩码做与运算可以得到网络号,主机号从全 0 到全 1 就是子网的 IP 地址范围。IP 地址和子网掩码还有一种更简洁的表示方法,例如 140.252.20.68/24,表示 IP 地址为 140.252.20.68,子网掩码的高 24 位是 1,也就是 255.255.255.0。

总结

  • IP地址==目标网络+主机地址
  • 路由的本质就是网络

特殊的 IP 地址

  • 将 IP 地址中的主机地址全部设为 0,就成为了网络号,代表这个局域网。
  • 将 IP 地址中的主机地址全部设为 1,就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包。
  • 127. * 的 IP 地址用于本机环回(loop back)测试,通常是 127.0.0.1
    在这里插入图片描述

IP 地址的数量限制

IP 地址是 32 位(4 字节),而 4 个字节组成的正整数,那么一共有 (2^{32}) 个 IP 地址,大概是 43 亿(左右)。

这意味着,一共只有 43 亿台主机能接入网络么?实际上,由于一些特殊的 IP 地址的存在,数量远不足 43 亿;另外 IP 地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个 IP 地址。

CIDR 在一定程度上缓解了 IP 地址不够用的问题(提高了利用率,减少了浪费,但是 IP 地址的绝对上限并没有增加),仍然不是很够用,这时候有三种方式来解决:

  • 动态分配 IP 地址:只给接入网络的设备分配 IP 地址,因此同一个 MAC 地址的设备,每次分配的 IP 地址不一定是相同的;
  • NAT 技术(后面会重点介绍)。
  • IPv6: IPv6并不是IPv4的简单升级版.这是互不相干的两个协议,彼此并不兼容; IPv6用16字节128位来表示一个IP地址;但是目前IPv6还没有普及

私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上使用任意的IP地址都可以,但是RFC1918规定了用于组建局域网的私有IP地址

  • 10.*,前 8 位是网络号,共 16,777,216 个地址
  • 172.16.到 172.31.,前 12 位是网络号,共 1,048,576 个地址
  • 192.168.*,前 16 位是网络号,共 65,536 个地址

包含在这个范围中的,都成为私有 IP,其余的则称为全局 IP(或公网 IP)。
在这里插入图片描述

  • 一个路由器可以配置两个 IP 地址,一个是 WAN 口 IP,一个是 LAN 口 IP(子网 IP)。
  • 路由器 LAN 口连接的主机,都从属于当前这个路由器的子网中。
  • 不同的路由器,子网 IP 其实都是一样的(通常都是 192.168.1.1)。子网内的主机 IP 地址不能重复,但是子网之间的 IP 地址就可以重复了
  • 每一个家用路由器,其实又作为运营商路由器的子网中的一个节点。这样的运营商路由器可能会有很多级,最外层的运营商路由器,WAN 口 IP 就是一个公网 IP 了。
  • 子网内的主机需要和外网进行通信时,路由器将 IP 首部中的 IP 地址进行替换(替换成 WAN 口 IP),这样逐级替换,最终数据包中的 IP 地址成为一个公网 IP。这种技术称为 NAT(Network Address Translation,网络地址转换)。
  • 如果希望我们自己实现的服务器程序,能够在公网上被访问到,就需要把程序部署在一台具有外网 IP 的服务器上。这样的服务器可以在阿里云/腾讯云上进行购买。

路由

在复杂的网络结构中,找出一条通往终点的路线。

路由的过程,就是这样一跳一跳(Hop by Hop)“问路”的过程。所谓“一跳”就是数据链路层中的一个区间。具体在以太网中指从源 MAC 地址到目的 MAC 地址之间的帧传输区间。

IP 数据包的传输过程也和问路一样:

  • 当 IP 数据包到达路由器时,路由器会先查看目的 IP。
  • 路由器决定这个数据包是能直接发送给目标主机,还是需要发送给下一个路由器。
  • 依次反复,一直到达目标 IP 地址。

那么如何判定当前这个数据包该发送到哪里呢?这个就依靠每个节点内部维护一个路由表。
在这里插入图片描述

  • 路由表可以使用 route 命令查看。
  • 如果目的 IP 命中了路由表,就直接转发即可。
  • 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址。

假设某主机上的网络接口配置和路由表如下:

在这里插入图片描述

  • 这台主机有两个网络接口,一个网络接口连到 192.168.10.0/24 网络,另一个网络接口连到 192.168.56.0/24 网络。
  • 路由表的 Destination 是目的网络地址,Genmask 是子网掩码,Gateway 是下一跳地址,Iface 是发送接口,Flags 中的 U 标志表示此条目有效(可以禁用某些条目),G 标志表示此条目的下一跳地址是某个路由器的地址,没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发。

转发过程例 1:如果要发送的数据包的目的地址是 192.168.56.3

  • 跟第一行的子网掩码做与运算得到 192.168.56.0,与第一行的目的网络地址不相符。
  • 再跟第二行的子网掩码做与运算得到 192.168.56.0,正是第二行的目的网络地址,因此从 eth1 接口发送出去。
  • 由于 192.168.56.0/24 正是与 eth1 接口直接相连的网络,因此可以直接发到目的主机,不需要经路由器转发。

转发过程例 2:如果要发送的数据包的目的地址是 202.10.1.2

  • 依次和路由表前几项进行对比,发现都不匹配。
  • 按缺省路由条目,从 eth0 接口发出去,发往 192.168.10.1 路由器。
  • 由 192.168.10.1 路由器根据它的路由表决定下一跳地址。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2378874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型学习:Deepseek+dify零成本部署本地运行实用教程(超级详细!建议收藏)

文章目录 大模型学习:Deepseekdify零成本部署本地运行实用教程(超级详细!建议收藏)一、Dify是什么二、Dify的安装部署1. 官网体验2. 本地部署2.1 linux环境下的Docker安装2.2 Windows环境下安装部署DockerDeskTop2.3启用虚拟机平台…

LeetCode Hot100 (2、3、4、5、6、8、9、12)

题2--字母异或位分词 class Solution { public:vector<vector<string>> groupAnagrams(vector<string>& strs) {// 一开始的思路是&#xff0c;对于其中的一个单词&#xff0c;遍历所有排序组合&#xff0c;然后判断这些组合是否在哈希表里//&#xff0…

FastMCP:为大语言模型构建强大的上下文和工具服务

FastMCP&#xff1a;为大语言模型构建强大的上下文和工具服务 在人工智能快速发展的今天&#xff0c;大语言模型&#xff08;LLM&#xff09;已经成为许多应用的核心。然而&#xff0c;如何让这些模型更好地与外部世界交互&#xff0c;获取实时信息&#xff0c;执行特定任务&am…

数据结构(3)线性表-链表-单链表

我们学习过顺序表时&#xff0c;一旦对头部或中间的数据进行处理&#xff0c;由于物理结构的连续性&#xff0c;为了不覆盖&#xff0c;都得移&#xff0c;就导致时间复杂度为O&#xff08;n&#xff09;&#xff0c;还有一个潜在的问题就是扩容&#xff0c;假如我们扩容前是10…

Java Solon v3.3.0 发布(国产优秀应用开发基座)

Solon 框架&#xff01; Solon 是新一代&#xff0c;Java 企业级应用开发框架。从零开始构建&#xff08;No Java-EE&#xff09;&#xff0c;有灵活的接口规范与开放生态。采用商用友好的 Apache 2.0 开源协议&#xff0c;是“杭州无耳科技有限公司”开源的根级项目&#xff…

23种设计模式概述详述(C#代码示例)

文章目录 1. 引言1.1 设计模式的价值1.2 设计模式的分类 2. 面向对象设计原则2.1 单一职责原则 (SRP)2.2 开放封闭原则 (OCP)2.3 里氏替换原则 (LSP)2.4 接口隔离原则 (ISP)2.5 依赖倒置原则 (DIP)2.6 合成复用原则 (CRP)2.7 迪米特法则 (LoD) 3. 创建型设计模式3.1 单例模式 (…

数字化工厂升级引擎:Modbus TCP转Profinet网关助力打造柔性生产系统

在当今的工业自动化领域&#xff0c;通信协议扮演着至关重要的角色。Modbus TCP和Profinet是两种广泛使用的工业通信协议&#xff0c;它们分别在不同的应用场景中发挥着重要作用。然而&#xff0c;有时我们可能需要将这两种协议进行转换&#xff0c;以实现不同设备之间的无缝通…

FPGA生成随机数的方法

FPGA生成随机数的方法&#xff0c;目前有以下几种: 1、震荡采样法 实现方式一&#xff1a;通过低频时钟作为D触发器的时钟输入端&#xff0c;高频时钟作为D触发器的数据输入端&#xff0c;使用高频采样低频&#xff0c;利用亚稳态输出随机数。 实现方式二&#xff1a;使用三个…

【Linux C/C++开发】轻量级关系型数据库SQLite开发(包含性能测试代码)

前言 之前的文件分享过基于内存的STL缓存、环形缓冲区&#xff0c;以及基于文件的队列缓存mqueue、hash存储、向量库annoy存储&#xff0c;这两种属于比较原始且高效的方式。 那么&#xff0c;有没有高级且高效的方式呢。有的&#xff0c;从数据角度上看&#xff0c;&#xff0…

记录算法笔记(2025.5.17)验证二叉搜索树

给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。 示例 1&#xff1a; 输入&…

flutter编译时 设置jdk版本

先查看flutter使用的版本 flutter doctor -v设置flutter的jdk目录 flutter config --jdk-dir "E:\soft\android-studio\jbr" 然后再验证下&#xff0c;看是否设置成功

ctfshow——web入门254~258

目录 web入门254 web入门255 web入门256 web入门257 web入门258 反序列化 先来看看其他师傅的讲解 web入门254 源码&#xff1a; <?phperror_reporting(0); highlight_file(__FILE__); include(flag.php);class ctfShowUser{public $usernamexxxxxx;public $passwo…

【数据处理】xarray 数据处理教程:从入门到精通

目录 xarray 数据处理教程&#xff1a;从入门到精通一、简介**核心优势** 二、安装与导入1. 安装2. 导入库 三、数据结构&#xff08;一&#xff09;DataArray&#xff08;二&#xff09; Dataset&#xff08;三&#xff09;关键说明 四、数据操作&#xff08;一&#xff09;索…

qt5.14.2 opencv调用摄像头显示在label

ui界面添加一个Qlabel名字是默认的label 还有一个button名字是pushButton mainwindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <opencv2/opencv.hpp> // 添加OpenCV头文件 #include <QTimer> // 添加定…

芯片生态链深度解析(三):芯片设计篇——数字文明的造物主战争

【开篇&#xff1a;设计——数字文明的“造物主战场”】 当英伟达的H100芯片以576TB/s显存带宽重构AI算力边界&#xff0c;当阿里平头哥倚天710以RISC-V架构实现性能对标ARM的突破&#xff0c;这场围绕芯片设计的全球竞赛早已超越技术本身&#xff0c;成为算法、架构与生态标准…

Rocky Linux 9.5 基于kubeadm部署k8s

一&#xff1a;部署说明 操作系统https://mirrors.aliyun.com/rockylinux/9.5/isos/x86_64/Rocky-9.5-x86_64-minimal.iso 主机名IP地址配置k8s- master192.168.1.1412颗CPU 4G内存 100G硬盘k8s- node-1192.168.1.1422颗CPU 4G内存 100G硬盘k8s- node-2192.168.1.1432…

uart16550详细说明

一、介绍 uart16550 ip core异步串行通信IP连接高性能的微控制器总线AXI,并为异步串行通信提供了 控制接口。软核设计连接了axilite接口。 二、特性 1.axilite接口用于寄存器访问和数据传输 2.16650串口和16450串口的软件和硬件寄存器都是兼容的 3.默认的core配置参数&#xf…

抢跑「中央计算+区域控制」市场,芯驰科技高端智控MCU“芯”升级

伴随着整车EE架构的加速变革&#xff0c;中国高端车规MCU正在迎来“新格局”。 在4月23日开幕的上海国际车展期间&#xff0c;芯驰科技面向新一代AI座舱推出了X10系列芯片&#xff0c;以及面向区域控制器、电驱和动力域控、高阶辅助驾驶和舱驾融合系统等的高端智控MCU产品E3系…

day015-进程管理

文章目录 1. 服务开机自启动2. 进程3. 僵尸进程3.1 处理僵尸进程3.2 查看僵尸进程3.2 排查与结束僵尸进程全流程 4. 孤儿进程5. 进程管理5.1 kill三剑客5.2 后台运行 6. 进程监控命令6.1 ps6.1.1 ps -ef6.1.2 ps aux6.1.3 VSZ、RSS6.1.4 进程状态6.1.5 进程、线程 6.2 top6.2.1…

POWER BI添加自定义字体

POWER BI添加自定义字体 POWER BI内置27种字体&#xff0c;今天分享一种很简单的添加自定义字体的方法。以更改如下pbix文件字体为例&#xff1a; 第一步&#xff1a;将该pbix文件重命名为zip文件并解压&#xff0c;找到主题json文件&#xff0c;如下图所示&#xff1a; 第二步…