高光谱遥感图像处理之数据分类的fcm算法

news2025/5/17 20:30:12

基于模糊C均值聚类(FCM)的高光谱遥感图像分类MATLAB实现示例

%% FCM高光谱图像分类示例
clc; clear; close all;

%% 数据加载与预处理
% 加载示例数据(此处使用公开数据集Indian Pines的简化版)
load('indian_pines.mat'); % 包含变量data(610x145x200)和ground_truth(610x145)
data = double(reshape(data, [], 200)); % 转换为610x145x200 → 92450x200矩阵
data = data ./ max(max(max(data)));   % 简单归一化

% 生成训练样本(实际应用中应使用更合理采样方法)
[trainInd, ~] = crossvalind('HoldOut', size(data,1), 0.3);
trainData = data(trainInd,:);
testData = data(~trainInd,:);

%% FCM参数设置
options = [2, 100, 1e-5, 0]; % 参数向量:[模糊指数m, 最大迭代次数, 误差阈值, 显示信息]
numClusters = 16;            % 聚类数目
exponent = options(1);       % 模糊权重指数m

%% 执行FCM聚类
[centers, U] = fcm(trainData', numClusters, [2 options(2) options(3) options(4)]);

%% 分类预测
% 计算测试样本隶属度
testU = zeros(size(testData,1), numClusters);
for i = 1:size(testData,1)
    distances = sum((centers' - testData(i,:)).^2, 2);
    testU(i,:) = 1 ./ (distances.^(2/(exponent-1)) * sum(1./distances.^(2/(exponent-1))));
end

% 获取最终分类结果
[~, predictedLabels] = max(testU, [], 2);

%% 结果评估(假设有ground truth)
% 转换测试集真实标签
trueLabels = ground_truth(~trainInd);
% 计算混淆矩阵
C = confusionmat(trueLabels, predictedLabels);
% 计算总体准确率
OA = sum(diag(C))/sum(C(:));
disp(['Overall Accuracy: ', num2str(OA*100), '%']);

%% 可视化(降维展示)
% 使用t-SNE进行降维
Y = tsne(testData(:,1:10)); % 取前10个波段进行可视化
figure;
gscatter(Y(:,1), Y(:,2), predictedLabels);
title('FCM Classification Result (t-SNE Projection)');
xlabel('t-SNE 1'); ylabel('t-SNE 2');

%% FCM函数实现
function [centers, U] = fcm(data, numClusters, options)
    % 输入:
    % data      - 输入数据矩阵(N x D)
    % numClusters - 聚类数目
    % options   - [m, maxIter, error, display]
    % 输出:
    % centers   - 聚类中心(N x 1)
    % U         - 隶属度矩阵(numClusters x N)

    [N, D] = size(data);
    m = options(1);        % 模糊指数
    maxIter = options(2);  % 最大迭代次数
    error = options(3);    % 停止阈值
    display = options(4);  % 显示信息标志

    % 初始化隶属度矩阵
    U = rand(numClusters, N);
    U = U ./ sum(U, 1);

    for iter = 1:maxIter
        % 更新聚类中心
        centers = (U.^m)' * data ./ sum(U.^m)';
        
        % 计算距离矩阵
        distances = pdist2(data, centers);
        
        % 更新隶属度矩阵
        U_new = 1 ./ (distances.^(-2/(m-1)) * ones(1,N));
        
        % 检查收敛
        if max(abs(U_new(:) - U(:))) < error
            break;
        end
        U = U_new;
        
        if display && mod(iter,10)==0
            fprintf('Iteration %d, Max Error: %f\n', iter, max(abs(U_new(:)-U(:))));
        end
    end
end

代码说明:

  1. 数据准备
    • 使用Indian Pines数据集作为示例(需自行下载完整数据)
    • 数据归一化处理以提高聚类效果
    • 采用30%的数据作为训练样本
  2. FCM实现
    • 包含自定义的FCM函数实现
    • 支持模糊指数调整(默认m=2)
    • 包含收敛判断和迭代信息显示
  3. 分类预测
    • 对测试样本计算各聚类中心的隶属度
    • 通过最大隶属度原则确定最终分类
  4. 结果评估
    • 计算总体准确率(OA)
    • 显示混淆矩阵
  5. 可视化
    • 使用t-SNE进行高维数据降维可视化
    • 不同颜色表示不同分类结果

高光谱遥感图像处理之数据分类的fcm算法源代码maltlab

使用建议:

  1. 需要安装Statistics and Machine Learning Toolbox
  2. 实际应用时应:
    • 使用更合理的训练样本选择方法(如分层抽样)
    • 调整FCM参数(模糊指数m通常取1.5-2.5)
    • 考虑结合领域知识选择聚类数目
    • 对于大数据可采用分块处理或降维技术
  3. 性能优化方向:
    • 使用矩阵运算代替循环
    • 利用GPU加速计算
    • 采用更高效的数据结构

注意事项:

  • 高光谱数据维度较高时建议先进行特征选择/降维
  • FCM对初始值敏感,可多次运行取最优结果
  • 实际应用中应结合光谱匹配等专业方法进行验证

如果需要处理实际高光谱数据文件(如ENVI格式),可以添加相应的数据读取代码,并调整数据预处理步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2377957.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2025年PMP 学习十六 第11章 项目风险管理 (总章)

2025年PMP 学习十六 第11章 项目风险管理 &#xff08;总章&#xff09; 第11章 项目风险管理 序号过程过程组1规划风险管理规划2识别风险规划3实施定性风险分析规划4实施定量风险分析规划5规划风险应对执行6实施风险应对执行7监控风险监控 目标: 提高项目中积极事件的概率和…

bili.png

import pygame as pg import sys import time import randompg.init() screen pg.display.set_mode((800,500)) pg.display.set_caption(runcool) screen.fill((135, 206, 235)) bili pg.image.load(bili.png)#得分 coin 0 game_font pg.font.Font(None, 50)#人物大小…

【设计模式】- 行为型模式1

模板方法模式 定义了一个操作中的算法骨架&#xff0c;将算法的一些步骤推迟到子类&#xff0c;使得子类可以不改变该算法结构的情况下重定义该算法的某些步骤 【主要角色】&#xff1a; 抽象类&#xff1a;给出一个算法的轮廓和骨架&#xff08;包括一个模板方法 和 若干基…

AI神经网络降噪算法在语音通话产品中的应用优势与前景分析

采用AI降噪的语言通话环境抑制模组性能效果测试 一、引言 随着人工智能技术的快速发展&#xff0c;AI神经网络降噪算法在语音通话产品中的应用正逐步取代传统降噪技术&#xff0c;成为提升语音质量的关键解决方案。相比传统DSP&#xff08;数字信号处理&#xff09;降噪&#…

springboot连接高斯数据库(GaussDB)踩坑指南

1. 用户密码加密类型与gsjdbc4版本不兼容问题 我的数据库&#xff0c;设置的加密类型(password_encryption_type)是2&#xff0c; 直接使用gsjdbc4.jar连接数据库报错。 org.postgresql.util.PSQLException: Invalid or unsupported by client SCRAM mechanisms 后使用gsjdb…

c++20引入的三路比较操作符<=>

目录 一、简介 二、三向比较的返回类型 2.1 std::strong_ordering 2.2 std::weak_ordering 2.3 std::partial_ordering 三、对基础类型的支持 四、自动生成的比较运算符函数 4.1 std::rel_ops的作用 4.2 使用<> 五、兼容他旧代码 一、简介 c20引入了三路比较操…

Cursor开发酒店管理系统

目录&#xff1a; 1、后端代码初始化2、使用Cursor打开spingboot项目3、前端代码初始化4、切换其他大模型5、Curosr无限续杯 1、后端代码初始化 找一个目录&#xff0c;使用idea在这个目录下新建springboot的项目。 2、使用Cursor打开spingboot项目 在根目录下新建.cursor文件…

图像对比度调整(局域拉普拉斯滤波)

一、背景介绍 之前刷对比度相关调整算法&#xff0c;找到效果不错&#xff0c;使用局域拉普拉斯做图像对比度调整&#xff0c;尝试复现和整理了下相关代码。 二、实现流程 1、基本原理 对输入图像进行高斯金字塔拆分&#xff0c;对每层的每个像素都针对性处理&#xff0c;生产…

如何在本地打包 StarRocks 发行版

字数 615&#xff0c;阅读大约需 4 分钟 最近我们在使用 StarRocks 的时候碰到了一些小问题&#xff1a; • 重启物化视图的时候会导致视图全量刷新&#xff0c;大量消耗资源。- 修复 PR&#xff1a;https://github.com/StarRocks/starrocks/pull/57371• excluded_refresh_tab…

git使用的DLL错误

安装好git windows客户端打开git bash提示 Error: Could not fork child process: Resource temporarily unavailable (-1). DLL rebasing may be required; see ‘rebaseall / rebase –help’. 提示 MINGW64的DLL链接有问题&#xff0c;其实是Windows的安全中心限制了&…

区块链blog1__合作与信任

&#x1f342;我们的世界 &#x1f33f;不是孤立的&#xff0c;而是网络化的 如果是单独孤立的系统&#xff0c;无需共识&#xff0c;而我们的社会是网络结构&#xff0c;即结点间不是孤立的 &#x1f33f;网络化的原因 而目前并未发现这样的理想孤立系统&#xff0c;即现实中…

从数据包到可靠性:UDP/TCP协议的工作原理分析

之前我们已经使用udp/tcp的相关接口写了一些简单的客户端与服务端代码。也了解了协议是什么&#xff0c;包括自定义协议和知名协议比如http/https和ssh等。现在我们再回到传输层&#xff0c;对udp和tcp这两传输层巨头协议做更深一步的分析。 一.UDP UDP相关内容很简单&#xf…

【CanMV K230】AI_CUBE1.4

《k230-AI 最近小伙伴有做模型的需求。所以我重新捡起来了。正好把之前没测过的测一下。 这次我们用的是全新版本。AICUBE1.4.dotnet环境9.0 注意AICUBE训练模型对硬件有所要求。最好使用独立显卡。 有小伙伴说集显也可以。emmmm可以试试哈 集显显存2G很勉强了。 我们依然用…

vscode 默认环境路径

目录 1.下面放在项目根目录上&#xff1a; 2.settings.json内容&#xff1a; 自定义conda环境断点调试 启动默认参数&#xff1a; 1.下面放在项目根目录上&#xff1a; .vscode/settings.json 2.settings.json内容&#xff1a; {"python.analysis.extraPaths"…

支付宝授权登录

支付宝授权登录 一、场景 支付宝小程序登录&#xff0c;获取用户userId 二、注册支付宝开发者账号 1、支付宝开放平台 2、点击右上角–控制台&#xff0c;创建小程序 3、按照步骤完善信息&#xff0c;生成密钥时会用到的工具 4、生成的密钥&#xff0c;要保管好&#xff…

Fabric 服务端插件开发简述与聊天事件监听转发

原文链接&#xff1a;Fabric 服务端插件开发简述与聊天事件监听转发 < Ping通途说 0. 引言 以前写过Spigot的插件&#xff0c;非常简单&#xff0c;仅需调用官方封装好的Event类即可。但Fabric这边在开发时由于官方文档和现有互联网资料来看&#xff0c;可能会具有一定的误…

电商物流管理优化:从网络重构到成本管控的全链路解析

大家好&#xff0c;我是沛哥儿。作为电商行业&#xff0c;我始终认为物流是电商体验的“最后一公里”&#xff0c;更是成本控制的核心战场。随着行业竞争加剧&#xff0c;如何通过物流网络优化实现降本增效&#xff0c;已成为电商企业的必修课。本文将从物流网络的各个环节切入…

Unity:延迟执行函数:Invoke()

目录 Unity 中的 Invoke() 方法详解 什么是 Invoke()&#xff1f; 基本使用方法 使用要点 延伸功能 ❗️Invoke 的局限与注意事项 在Unity中&#xff0c;延迟执行函数是游戏逻辑中常见的需求&#xff0c;比如&#xff1a; 延迟切换场景 延迟播放音效或动画 给玩家时间…

移植RTOS,发现任务栈溢出怎么办?

目录 1、硬件检测方法 2、软件检测方法 3、预防堆栈溢出 4、处理堆栈溢出 在嵌入式系统中&#xff0c;RTOS通过管理多个任务来满足严格的时序要求。任务堆栈管理是RTOS开发中的关键环节&#xff0c;尤其是在将RTOS移植到新硬件平台时。堆栈溢出是嵌入式开发中常见的错误&am…

【设计模式】- 结构型模式

代理模式 给目标对象提供一个代理以控制对该对象的访问。外界如果需要访问目标对象&#xff0c;需要去访问代理对象。 分类&#xff1a; 静态代理&#xff1a;代理类在编译时期生成动态代理&#xff1a;代理类在java运行时生成 JDK代理CGLib代理 【主要角色】&#xff1a; 抽…