GAN简读

news2025/5/15 8:25:06

Abstract

我们提出了一个通过同时训练两个模型的对抗过程来评估生成模型的新框架:一个生成模型 G G G用来捕捉数据特征,还有一个用于估计这个样本是来自训练样本还是 G G G的概率的判别模型 D D D, G G G的训练过程是最大化 D D D犯错的概率。这个框架就相当于一个minimax two-player game。再任意的 G G G D D D的函数空间,存在唯一解: G G G涵盖了训练数据的分布,, D D D恒为0.5。当 G G G D D D均被定义为MLP时,整个系统可以使用反向传播进行训练。则无论在训练或是生成样本过程中不再需要任何马尔科夫链或者展开的近似推理。通过在生成的样本上进行定性和定量的评估表明了该框架的潜力。

1 Introduction

深度学习是用来发掘一些丰富的,有层次的,能够表示对像自然图像,包含演讲的声波,自然语言语料库中的符号这样的在AI应用中遇到的各种数据的概率分布的模型。迄今为止,深度学习中最大的成功包括那些通常将一个高纬度的丰富输入映射到一个类别标签的判别模型。这些巨大的成功主要基于反向传播和dropout算法,使用有着突出梯度效果的多个线性单元。深度生成网络由于估计MLE中难搞的概率计算与策略的困难,以及生成环境中难以利用线性单元的优势作用。我们提出了一种新的生成模型估计过程来巧妙地避开这些难题。

在提到的对抗网络中,生成模型与对手进行对抗:一个判别模型学习去判别一个样本是来自模型分布还是数据分布。生成模型可以类比为一个尝试造假币并在不被发现的条件下使用的伪造团队,而检测模型可以类比为尝试检测假币的警察。这个游戏中的竞争驱动着两队提升方法直到假货与珍品无法区分。

这个框架可以为多种模型和优化算法产生特定的训练算法。在本文中,我们探索当生成模型通过经由一个MLP传递随机噪声生成样本的情况,并且判别模型也是一个MLP。我们将这种特殊网络称为对抗网络。在这种情况下,我们可以只使用非常成功的反向传播和dropout算法[17]来训练这两个模型,并只使用正向传播从生成模型中进行采样。不需要近似推理或马尔可夫链。

2 Related work

具有潜在变量的有向图模型是具有潜在变量的无向图模型的替代方案,例如受限玻尔兹曼机(RBM),深度玻尔兹曼机及其众多变体。这些模型内的相互作用被表示为非归一化势函数的乘积,通过在随机变量的所有状态进行全局求和/微分来归一化,

翻译

这个量(配分函数)和它的梯度除了最平凡的例子外,对所有的情况都是难以处理的,尽管它们可以通过马尔可夫链蒙特卡罗(MCMC)方法来估计。混合对依赖MCMC的学习算法提出了一个重要问题。

深度信念网络(DBN)是包含单个无向层和多个有向层的混合模型。虽然存在快速近似的逐层训练标准,但DBN引起与无向和有向模型相关联的计算困难。

也有人提出了不近似或限制对数似然的替代标准,例如得分匹配[18]和噪声对比估计(NCE)。这两种方法都需要将学习的概率密度解析地指定为归一化常数。请注意,在许多有趣的生成模型中,有几层潜在变量(如DBN和DBM),甚至不可能导出一个易于处理的未归一化概率密度。一些模型,如去噪自动编码器[30]和收缩自动编码器,具有与应用于RBM的分数匹配非常相似的学习规则。在NCE中,如在这项工作中一样,采用区分性训练标准来拟合生成模型。然而,生成模型本身不是用于拟合单独的判别模型,而是用于将所生成的数据与具有固定噪声分布的样本区分开。由于NCE使用固定的噪声分布,因此即使模型在观察变量的一小部分上学习到近似正确的分布,学习也会显着减慢。

最后,一些技术不涉及明确定义概率分布,而是训练生成机从所需分布中提取样本。这种方法的优点在于,这种机器可以被设计成通过反向传播来训练。最近在这一领域的突出工作包括生成随机网络(GSN)框架[5],它扩展了广义去噪自动编码器[4]:两者都可以被视为定义参数化马尔可夫链,即,学习执行生成马尔可夫链的一个步骤的机器的参数。与GSN相比,对抗网框架不需要马尔可夫链进行采样。由于对抗网络在生成过程中不需要反馈回路,因此它们能够更好地利用分段线性单元,这提高了反向传播的性能,但在反馈回路中使用时存在无界激活的问题。最近通过反向传播来训练生成机的例子包括最近关于自动编码变分贝叶斯和随机反向传播的工作。

3 Adversarial nets

对抗网络在当模型都是MLP时应用最易直接,为了学习到生成器在数据 x x x上的分布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2375939.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

精准测量“双雄会”:品致与麦科信光隔离探头谁更胜一筹

在电子技术飞速发展的当下,每一次精准测量都如同为科技大厦添砖加瓦。光隔离探头作为测量领域的关键角色,能有效隔绝电气干扰,保障测量安全与精准。在众多品牌中,PINTECH品致与麦科信的光隔离探头脱颖而出,成为工程师们…

NSSCTF [HNCTF 2022 WEEK4]

题解前的吐槽:紧拖慢拖还是在前段时间开始学了堆的UAF(虽然栈还没学明白,都好难[擦汗]),一直觉得学的懵懵懂懂,不太敢发题解,这题算是入堆题后一段时间的学习成果,有什么问题各位师傅可以提出来&#xff0c…

tornado_登录页面(案例)

目录 1.基础知识​编辑 2.脚手架(模版) 3.登录流程图(processon) 4.登录表单 4.1后(返回值)任何值:username/password (4.1.1)app.py (4.1.2&#xff…

YOLOv12模型部署(保姆级)

一、下载YOLOv12源码 1.通过网盘分享的文件:YOLOv12 链接: https://pan.baidu.com/s/12-DEbWx1Gu7dC-ehIIaKtQ 提取码: sgqy (网盘下载) 2.进入github克隆YOLOv12源码包 二、安装Anaconda/pycharm 点击获取官网链接(anaconda) 点击获取…

BGP实验练习1

需求: 要求五台路由器的环回地址均可以相互访问 需求分析: 1.图中存在五个路由器 AR1、AR2、AR3、AR4、AR5,分属不同自治系统(AS),AR1 在 AS 100,AR2 - AR4 在 AS 200,AR5 在 AS …

HTML、CSS 和 JavaScript 基础知识点

HTML、CSS 和 JavaScript 基础知识点 一、HTML 基础 1. HTML 文档结构 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.…

数据结构与算法分析实验12 实现二叉查找树

实现二叉查找树 1、二叉查找树介绍2.上机要求3.上机环境4.程序清单(写明运行结果及结果分析)4.1 程序清单4.1.1 头文件 TreeMap.h 内容如下&#xff1a;4.1.2 实现文件 TreeMap.cpp 文件内容如下&#xff1a;4.1.3 源文件 main.cpp 文件内容如下&#xff1a; 4.2 实现展效果示5…

使用 Semantic Kernel 调用 Qwen-VL 多模态模型

使用 Semantic Kernel 调用 Qwen-VL 多模态模型 一、引言 随着人工智能技术的不断发展&#xff0c;多模态模型逐渐成为研究的热点。Qwen-VL 是阿里云推出的大规模视觉语言模型&#xff0c;支持图像、文本等多种输入形式&#xff0c;并能够进行图像描述、视觉问答等多种任务。…

(4)python开发经验

文章目录 1 使用ctypes库调用2 使用pybind11 更多精彩内容&#x1f449;内容导航 &#x1f448;&#x1f449;Qt开发 &#x1f448;&#x1f449;python开发 &#x1f448; 1 使用ctypes库调用 说明&#xff1a;ctypes是一个Python内置的库&#xff0c;可以提供C兼容的数据类型…

深度剖析 GpuGeek 实例:GpuGeek/Qwen3-32B 模型 API 调用实践与性能测试洞察

深度剖析 GpuGeek 实例&#xff1a;GpuGeek/Qwen3-32B 模型 API 调用实践与性能测试洞察 前言 GpuGeek专注于人工智能与高性能计算领域的云计算平台&#xff0c;致力于为开发者、科研机构及企业提供灵活、高效、低成本的GPU算力资源。平台通过整合全球分布式数据中心资源&#…

MindSpore框架学习项目-ResNet药物分类-数据增强

目录 1.数据增强 1.1设置运行环境 1.1.1数据预处理 数据预处理代码解析 1.1.2数据集划分 数据集划分代码说明 1.2数据增强 1.2.1创建带标签的可迭代对象 1.2.2数据预处理与格式化&#xff08;ms的data格式&#xff09; 从原始图像数据到 MindSpore 可训练 / 评估的数…

【MySQL】别名设置与使用

个人主页&#xff1a;Guiat 归属专栏&#xff1a;MySQL 文章目录 1. 别名基础概念2. 列别名设置2.1 基础语法2.2 特殊字符处理2.3 计算字段示例 3. 表别名应用3.1 基础表别名3.2 自连接场景 4. 高级别名技术4.1 子查询别名4.2 CTE别名 5. 别名执行规则5.1 作用域限制5.2 错误用…

【内网渗透】——S4u2扩展协议提权以及KDC欺骗提权

【内网渗透】——S4u2扩展协议提权以及KDC欺骗提权 文章目录 【内网渗透】——S4u2扩展协议提权以及KDC欺骗提权[toc]一&#xff1a;Kerberos 委派攻击原理之 S4U2利用1.1原理1.2两种扩展协议**S4U2Self (Service for User to Self)****S4U2Proxy (Service for User to Proxy)*…

Linux——CMake的快速入门上手和保姆级使用介绍、一键执行shell脚本

目录 一、前言 二、CMake简介 三、CMake与其他常见的构建、编译工具的联系 四、CMake入门 1、CMake的使用注意事项 2、基本的概念和术语 3、CMake常用的预定义变量 4、CMakeLists.txt文件的基本结构 五、上手实操 1、示例 ​编辑 2、一个正式的工程构建 2.1基本构…

如何高效集成MySQL数据到金蝶云星空

MySQL数据集成到金蝶云星空&#xff1a;SC采购入库-深圳天一-OK案例分享 在企业信息化建设中&#xff0c;数据的高效流转和准确对接是实现业务流程自动化的关键。本文将聚焦于一个具体的系统对接集成案例——“SC采购入库-深圳天一-OK”&#xff0c;详细探讨如何通过轻易云数据…

通过POI实现对word基于书签的内容替换、删除、插入

一、基本概念 POI&#xff1a;即Apache POI&#xff0c; 它是一个开源的 Java 库&#xff0c;主要用于读取 Microsoft Office 文档&#xff08;Word、Excel、PowerPoint 等&#xff09;&#xff0c;修改 或 生成 Office 文档内容&#xff0c;保存 为对应的二进制或 XML 格式&a…

FlashInfer - 测试的GPU H100 SXM、A100 PCIe、RTX 6000 Ada、RTX 4090

FlashInfer - 测试的GPU H100 SXM、A100 PCIe、RTX 6000 Ada、RTX 4090 flyfish GPU 技术参数术语 1. Memory bandwidth (GB/s) 中文&#xff1a;显存带宽&#xff08;单位&#xff1a;GB/秒&#xff09; 定义&#xff1a;显存&#xff08;GPU 内存&#xff09;与 GPU 核心…

MongoDB从入门到实战之Windows快速安装MongoDB

前言 本章节的主要内容是在 Windows 系统下快速安装 MongoDB 并使用 Navicat 工具快速连接。 MongoDB从入门到实战之MongoDB简介 MongoDB从入门到实战之MongoDB快速入门 MongoDB从入门到实战之Docker快速安装MongoDB 下载 MongoDB 安装包 打开 MongoDB 官网下载页面&…

Excelize 开源基础库发布 2.9.1 版本更新

Excelize 是 Go 语言编写的用于操作 Office Excel 文档基础库&#xff0c;基于 ECMA-376&#xff0c;ISO/IEC 29500 国际标准。可以使用它来读取、写入由 Excel、WPS、OpenOffice 等办公软件创建的电子表格文档。支持 XLAM / XLSM / XLSX / XLTM / XLTX 等多种文档格式&#xf…

Profibus DP主站转Modbus RTU/TCP网关接艾默生流量计与上位机通讯

Profibus DP主站转Modbus RTU/TCP网关接艾默生流量计与上位机通讯 艾默生流量计与Profibus DP主站转Modbus RTU/TCP网关的通讯&#xff0c;是现代工业自动化中的一个关键环节。为了实现这一过程&#xff0c;我们需要了解一些基础概念和具体操作方法。 在工业自动化系统中&…