【C++】类与对象【下】

news2025/5/15 6:55:28

文章目录

  • 再谈构造函数
    • 构造函数的赋值
      • 构造函数体赋值:
      • 初始化列表
      • explicit关键字
    • static成员
      • 概念
      • 特性
    • C++11中成员初始化的新玩法
    • 友元
      • 友元类
    • 内部类
      • 概念

在这里插入图片描述

再谈构造函数

构造函数的赋值

构造函数体赋值:

在创建对象时,编译器会通过调用构造函数,给对象的各个成员变量一个合适的初始值

class Date
{
public:
	// 构造函数
	Date(int year = 0, int month = 1, int day = 1)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	int _year;
	int _month;
	int _day;
};

  • 初始化和赋值的概念不同
    调用构造函数后,每个变量都有一个初始值,但是构造函数中的语句只能将其赋初值,而不能称为初始化,因为初始话只能初始化一次,构造函数体内可以及进行的多次赋值
class Date
{
public:
	// 构造函数
	Date(int year = 0, int month = 1, int day = 1)
	{
		_year = year;
		_month = month;
		_month=6;
		_day = day;
	}
private:
	int _year;
	int _month;
	int _day;
};

初始化列表

初始化列表:
以一个冒号开始,接着以逗号分隔数据的成员列表,每个成员变量后面跟一个放在括号中的初始值或表达式,初始化完之后,结尾处要有一个“{}”的结束符号

注意事项:

  1. 每个成员变量在初始化列表中只能出现一次
    • 即同一成员变量不能同时出现
  2. 类中包含以下成员,必须放在初始化列表进行初始化
    1. 引用成员变量
      • 引用类型的变量在定义时就必须给一个初始值,引用成员变量必须使用初始化列表对齐进行初始化。
    	int a = 10; 
    	int& b = a;// 创建时就初始化
    
    1. const成员变量
      被congst成员变量,被修饰的变量也必须在定义时给一个初始值
    	const int a = 10;
    	//correct 创建时就初始化 const int b;
    	//error 创建时未初始化
    
    1. 自定义类型成员
      若一个类没有默认构造函数,那么在实例化该类对象时需要传参对齐进行初始化,所以实例化没有默认构造函数的类对象时必须使用初始化列表对齐进行初始化。
		class A //该类没有默认构造函数 
{
public:
	A(int val) //注:这个不叫默认构造函数(需要传参调用)
	{
		_val = val;
	}
private:
	int _val;
};

class B
{
public:
	B()
		:_a(2021) //必须使用初始化列表对其进行初始化
	{}
private:
	A _a; //自定义类型成员(该类没有默认构造函数)
};

  • 在这里再声明一下,默认构造函数是指不用传参就可以调用的构造函数
    1.我们不写,编译器自动生成的构造函数。
    2.无参的构造函数。
    3.全缺省的构造函数。
    二.尽量使用初始化列表初始化
  • 因为初始化列表实际上就是当你实例化一个对象时,该对象的成员变量定义的地方,所以无论你是否使用初始化,都会走怎么一个过程
    严格来说
    1. 对于内置类型,使用初始化列表和在构造函数体内进行初始化实际上是没有差别的,其差别就类似于如下代码:
 // 使用初始化列表 int a = 10 // 在构造函数体内初始化(不使用初始化列表) int a; a = 10;
  1. 对于自定义类型,使用初始化列表可以提高代码的效率
		class Time
{
public:
	Time(int hour = 0)
	{
		_hour = hour;
	}
private:
	int _hour;
};
class Test
{
public:
	// 使用初始化列表
	Test(int hour)
		:_t(12)// 调用一次Time类的构造函数
	{}
private:
	Time _t;
};

如果不走初始化列表,我们需要这样写

class Time
{
public:
	Time(int hour = 0)
	{
		_hour = hour;
	}
private:
	int _hour;
};
class Test
{
public:
	// 在构造函数体内初始化(不使用初始化列表)
	Test(int hour)
	{ //初始化列表调用一次Time类的构造函数(不使用初始化列表但也会走这个过程)
		Time t(hour);// 调用一次Time类的构造函数
		_t = t;// 调用一次Time类的赋值运算符重载函数
	}
private:
	Time _t;
};

![[Pasted image 20250514104132.png]]

  • 这当我们要实例化一个Test类的对象时,在实例化过程中会先在初始化列表时调用一次Time类的构造函数,
  • 实例化t对象时调用一次Time类的构造函数,最后还需要调用了一次Time类的赋值运算符重载函数

四.成员变量再类中声明的次序就是其再初始化列表的初始化顺序,与其再初始化列表的先后顺序无关

#include <iostream>
using namespace std;
int i = 0;
class Test
{
public:
	Test()
		:_b(i++)
		,_a(i++)
	{}
	void Print()
	{
		cout << "_a:" << _a << endl;
		cout << "_b:" << _b << endl;
	}
private:
	int _a;
	int _b;
};
int main()
{
	Test test;
	test.Print(); //打印结果test._a为0,test._b为1
	return 0;
}

初始化列表的初始化顺序是成员变量在类中声明次序,所以最终test._a为0,test._b为1。

explicit关键字

构造函数中,不仅有可以构造和初始化,对于单个参数的构造函数,还支持隐式类型转换

#include <iostream>
using namespace std;
class Date
{
public:
	Date(int year = 0) //单个参数的构造函数
		:_year(year)
	{}
	void Print()
	{
		cout << _year << endl;
	}
private:
	int _year;
};
int main()
{
	Date d1 = 2021; //支持该操作
	d1.Print();
	return 0;
}

在语法上,代码中Date d1 = 2021等价于以下两句代码:

Date tmp(2021); //先构造 Date d1(tmp); //再拷贝构造

所以在早期的编译器中,当编译器遇到Date d1=2021这句代码时,会先构造一个临时对象,再用临时对象拷贝构造d1;但是编译器已经做了优化,Date d1=2021会按照Date d1(2021)这句代码进行处理

int a = 10; double b = a; //隐式类型转换
对于单参数的自定义类型来说,Date d1 = 2021这种代码的可读性不是很好,
我们若是想禁止单参数构造函数的隐式转换,可以用关键字explicit来修饰构造函数

static成员

概念

声明为static的类成员称为类的静态成员。用static修饰的成员变量,称之为静态成员变量;用static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化

特性

一、静态成员为所以类对象所共享,不属于某个具体的对象
鉴于此,我们看看以下代码的运行结果:

#include <iostream>
using namespace std;
class Test
{
private:
	static int _n;
};
int main()
{
	cout << sizeof(Test) << endl;
	return 0;
}

结果计算Test类的大小为1,因为静态成员_n时存储在静态区的,属于整个类,也属于类的所有对象,所以计算类的大小或是类对象的大小时,静态成员并不计入其总大小之和

二 静态成员变量必须在类外定义,定义时不添加static关键字

class Test 
{ private: static int _n; };
// 静态成员变量的定义初始化 int Test::_n = 0;

注意:这里静态成员变量_n虽然是私有,但是我们在类外突破类域直接对其进行了访问。这是一个特例,不受访问限定符的限制,否则就没办法对静态成员变量进行定义和初始化了。
三 静态成员函数没有隐藏的this指针。不能访问非静态成员

class Test
{
public:
	static void Fun()
	{
		cout << _a << endl; //error不能访问非静态成员
		cout << _n << endl; //correct
	}
private:
	int _a; //非静态成员
	static int _n; //静态成员
};

小贴士:含有静态成员变量的类,一般含有一个静态成员函数,用于访问静态成员变量。
四、访问静态成员变量的方法
1.当静态成员变量为公有时,有以下几种访问方式:

class Test
{
public:
	static int _n; //公有
};
// 静态成员变量的定义初始化
int Test::_n = 0;
int main()
{
	Test test;
	cout << test._n << endl; //1.通过类对象突破类域进行访问
	cout << Test()._n << endl; //3.通过匿名对象突破类域进行访问
	cout << Test::_n << endl; //2.通过类名突破类域进行访问
	return 0;
}

2.当静态成员变量为私有,有以下几种访问方式

#include <iostream>
using namespace std;
class Test
{
public:
	static int GetN()
	{
		return _n;
	}
private:
	static int _n;
};
// 静态成员变量的定义初始化
int Test::_n = 0;
int main()
{
	Test test;
	cout << test.GetN() << endl; //1.通过对象调用成员函数进行访问
	cout << Test().GetN() << endl; //2.通过匿名对象调用成员函数进行访问
	cout << Test::GetN() << endl; //3.通过类名调用静态成员函数进行访问
	return 0;
}

五 静态成员和类的普通成员一样,也有public,private和protectedd三种访问级别
所以当静态成员变量设置为private时,尽管我们突破了类域,也不能对其进行访问。

注意区分两个问题:
 1、静态成员函数可以调用非静态成员函数吗?
 2、非静态成员函数可以调用静态成员函数吗?
问题1:不可以。因为非静态成员函数的第一个形参默认为this指针,而静态成员函数中没有this指针,故静态成员函数不可调用非静态成员函数。
问题2:可以。因为静态成员函数和非静态成员函数都在类中,在类中不受访问限定符的限制。

C++11中成员初始化的新玩法

C++11支持非静态成员变量在声明时进行初始化赋值,但是要注意这里不是初始化,这里是给声明的成员变量一个缺省值

 class A
{
public:
	void Print()
	{
		cout << _a << endl;
		cout << _p << endl;
	}
private:
	// 非静态成员变量,可以在成员声明时给缺省值。
	int _a = 10; 
	int* _p = (int*)malloc(4);
	static int _n; //静态成员变量不能给缺省值
};

初始化列表是成员变量定义初始化的地方,你若是给定了值,就用你所给的值对成员变量进行初始化,你若没有给定值,则用缺省值进行初始化,若是没有缺省值,则内置类型的成员就是随机值。

友元

友元函数可以直接访问类的私有成员,它时定义在类外部的普通函数,不属于任何类,但需要在类的内部声明,声明时需要加friend关键字。
对于之前实现的日期类,我们现在尝试重载operator<<,但是我们发现没办法将其重载为成员函数,因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置:this指针默认是第一个参数,即左操作数,但是实际使用中cout需要是第一个形参对象才能正常使用。
 所以我们要将operator<<重载为全局函数,但是这样的话,又会导致类外没办法访问成员,那么这里就需要友元来解决。(operator>>同理)

  • 友元函数
    - ![[Pasted image 20250514112419.png]]

- ![[Pasted image 20250514112432.png]]

class Date
{
	// 友元函数的声明
	friend ostream& operator<<(ostream& out, const Date& d);
	friend istream& operator>>(istream& in, Date& d);
public:
	Date(int year = 0, int month = 1, int day = 1)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	int _year;
	int _month;
	int _day;
};
// <<运算符重载
ostream& operator<<(ostream& out, const Date& d)
{
	out << d._year << "-" << d._month << "-" << d._day<< endl;
	return out;
}
// >>运算符重载
istream& operator>>(istream& in, Date& d)
{
	in >> d._year >> d._month >> d._day;
	return in;
}

友元类

友元函数说明
 1、友元函数可以访问类是私有和保护成员,但不是类的成员函数。
 2、友元函数不能用const修饰。
 3、友元函数可以在类定义的任何地方声明,不受访问限定符的限制。
 4、一个函数可以是多个类的友元函数。
 5、友元函数的调用与普通函数的调用原理相同。

class A
{
	// 声明B是A的友元类
	friend class B;
public:
	A(int n = 0)
		:_n(n)
	{}
private:
	int _n;
};
class B
{
public:
	void Test(A& a)
	{
		// B类可以直接访问A类中的私有成员变量
		cout << a._n << endl;
	}
};

内部类

概念

概念:如果一个类定义在另一个类的内部,则这个类被称为内部类。
注意:

1.此时的内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象区调用内部类。  
2、外部类对内部类没有任何优越的访问权限。
 3、内部类就是外部类的友元类,即内部类可以通过外部类的对象参数来访问外部类中的所有成员。但是外部类不是内部类的友元。

特性

1、内部类可以定义在外部类的public、private以及protected这三个区域中的任一区域。
2、内部类可以直接访问外部类中的static、枚举成员,不需要外部类的对象/类名。  
3、外部类的大小与内部类的大小无关。

#include <iostream>
using namespace std;
class A //外部类
{
public:
	class B //内部类
	{
	private:
		int _b;
	};
private:
	int _a;
};
int main()
{
	cout << sizeof(A) << endl; //外部类的大小
	return 0;
}
```这里外部类A的大小为4,与内部类的大小无关。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2375889.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无人机避障——如何利用MinumSnap进行对速度、加速度进行优化的轨迹生成(附C++python代码)

&#x1f525;轨迹规划领域的 “YYDS”——minimum snap&#xff01;作为基于优化的二次规划经典&#xff0c;它是无人机、自动驾驶轨迹规划论文必引的 “开山之作”。从优化目标函数到变量曲线表达&#xff0c;各路大神疯狂 “魔改”&#xff0c;衍生出无数创新方案。 &#…

Llama:开源的急先锋

Llama:开源的急先锋 Llama1&#xff1a;开放、高效的基础语言模型 Llama1使用了完全开源的数据&#xff0c;性能媲美GPT-3&#xff0c;可以在社区研究开源使用&#xff0c;只是不能商用。 Llama1提出的Scaling Law 业内普遍认为如果要达到同一个性能指标&#xff0c;训练更…

“redis 目标计算机积极拒绝,无法连接” 解决方法,每次开机启动redis

如果遇到以上问题 先打开“服务” 找到App Readiness 右击-启动 以管理员身份运行cmd&#xff0c;跳转到 安装redis的目录 运行&#xff1a;redis-server.exe redis.windows.conf 以管理员身份打开另一cmd窗口&#xff0c;跳转到安装redis的目录 运行&#xff1a;redis-…

LeetCode 热题 100 35.搜索插入位置

目录 题目&#xff1a; 题目描述&#xff1a; 题目链接&#xff1a; 思路&#xff1a; 核心思路&#xff1a; 思路详解&#xff1a; 代码&#xff1a; Java代码&#xff1a; 题目&#xff1a; 题目描述&#xff1a; 题目链接&#xff1a; 35. 搜索插入位置 - 力扣&…

从 “学会学习” 到高效适应:元学习技术深度解析与应用实践

一、引言&#xff1a;当机器开始 “学会学习”—— 元学习的革命性价值 在传统机器学习依赖海量数据训练单一任务模型的时代&#xff0c;元学习&#xff08;Meta Learning&#xff09;正掀起一场范式革命。 这项旨在让模型 “学会学习” 的技术&#xff0c;通过模仿人类基于经验…

AI开发者的算力革命:GpuGeek平台全景实战指南(大模型训练/推理/微调全解析)

目录 背景一、AI工业化时代的算力困局与破局之道1.1 中小企业AI落地的三大障碍1.2 GpuGeek的破局创新1.3 核心价值 二、GpuGeek技术全景剖析2.1 核心架构设计 三、核心优势详解‌3.1 优势1&#xff1a;工业级显卡舰队‌‌‌3.2 优势2&#xff1a;开箱即用生态‌3.2.1 预置镜像库…

AWS SNS:解锁高并发消息通知与系统集成的云端利器

导语 在分布式系统架构中&#xff0c;如何实现高效、可靠的消息通知与跨服务通信&#xff1f;AWS Simple Notification Service&#xff08;SNS&#xff09;作为全托管的发布/订阅&#xff08;Pub/Sub&#xff09;服务&#xff0c;正在成为企业构建弹性系统的核心组件。本文深度…

【PmHub后端篇】PmHub集成 Sentinel+OpenFeign实现网关流量控制与服务降级

在微服务架构中&#xff0c;保障服务的稳定性和高可用性至关重要。本文将详细介绍在 PmHub 中如何利用 Sentinel Gateway 进行网关限流&#xff0c;以及集成 Sentinel OpenFeign 实现自定义的 fallback 服务降级。 1 熔断降级的必要性 在微服务架构中&#xff0c;服务间的调…

2025最新出版 Microsoft Project由入门到精通(八)

目录 查找关键路径方法 方法1:格式->关键任务 方法2:插入关键属性列 方法3&#xff1a;插入“可宽延的总时间”进行查看&#xff0c;>0不是关键路径&#xff0c;剩余的全是关键路径 方法4:设置关键路径的工作表的文本样式​编辑 方法5&#xff1a;突出显示/筛选器…

3.0/Q2,Charls最新文章解读

文章题目&#xff1a;Development of a visualized risk prediction system for sarcopenia in older adults using machine learning: a cohort study based on CHARLS DOI&#xff1a;10.3389/fpubh.2025.1544894 中文标题&#xff1a;使用机器学习开发老年人肌肉减少症的可视…

使用matlab进行数据拟合

目录 一、工作区建立数据 二、曲线拟合器(在"APP"中) 三、曲线拟合函数及参数 四、 在matlab中编写代码 一、工作区建立数据 首先&#xff0c;将数据在matlab工作区中生成。如图1所示&#xff1a; 图 1 二、曲线拟合器(在"APP"中) 然后&#xff0c;…

分布式1(cap base理论 锁 事务 幂等性 rpc)

目录 分布式系统介绍 一、定义与概念 二、分布式系统的特点 三、分布式系统面临的挑战 四、分布式系统的常见应用场景 CAP 定理 BASE 理论 BASE理论是如何保证最终一致性的 分布式锁的常见使用场景有哪些&#xff1f; 1. 防止多节点重复操作 2. 资源互斥访问 3. 分…

Myshell与清华联合开源TTS模型OpenVoiceV2,多语言支持,风格控制进一步增强~

项目背景 开发团队与发布 OpenVoice2 由 MyShell AI&#xff08;加拿大 AI 初创公司&#xff09;与 MIT 和清华大学的研究人员合作开发&#xff0c;技术报告于 2023 年 12 月发布 &#xff0c;V2 版本于 2024 年 4 月发布 。 项目目标是提供一个高效、灵活的语音克隆工具&…

YOLO11解决方案之热力图探索

概述 Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。 使用YOLO11生成的热力图把复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色…

如何在终端/命令行中把PDF的每一页转换成图片(PNG)

今天被对象安排了一个任务&#xff1a; 之前自己其实也有这个需要&#xff0c;但是吧&#xff0c;我懒&#xff1a;量少拖拽&#xff0c;量大就放弃。但这次躲不过去了&#xff0c;所以研究了一下有什么工具可以做到这个需求。 本文记录我这次发现的使用 XpdfReader 的方法。…

计算机系统结构——Cache性能分析

一、实验目的 加深对Cache的基本概念、基本组织结构以及基本工作原理的理解。掌握Cache容量、相联度、块大小对Cache性能的影响。掌握降低Cache不命中率的各种方法以及这些方法对提高Cache性能的好处。理解LRU与随机法的基本思想以及它们对Cache性能的影响。 二、实验平台 实…

GESP2023年12月认证C++八级( 第三部分编程题(2)大量的工作沟通)

参考程序&#xff1a; #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <string> #include <map> #include <iostream> #include <cmath> #include <vector> #include <qu…

015枚举之滑动窗口——算法备赛

滑动窗口 最大子数组和 题目描述 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 原题链接 思路分析 见代码注解 代码 int maxSubArray(vector<int>& num…

新型深度神经网络架构:ENet模型

语义分割技术能够为图像中的每个像素分配一个类别标签&#xff0c;这对于理解图像内容和在复杂场景中找到目标对象至关重要。在自动驾驶和增强现实等应用中&#xff0c;实时性是一个硬性要求&#xff0c;因此设计能够快速运行的卷积神经网络非常关键。 尽管深度卷积神经网络&am…