Spring AI
Spring AI是一个旨在推进生成式人工智能应用程序发展的项目,Spring AI的核心目标是提供高度抽象化的组件,作为开发AI应用程序的基础,使得开发者能够以最少的代码改动便捷地交换和优化功能模块
在开发之前先得引入大模型,这里选择deepseek
至于导入deepseek,咱这里选用ollama 大模型工具来进行本地化部署和管理
ollama下载与启动
进入ollama官网:Ollama
下载对应版本
直接install
deepseek模型下载
下载deepseek模型,这里选择的是r1:8b版本的,各位可以根据自己的电脑配置进行选择
执行ollama run deepseek-r1:8b
看到显示了success即运行成功
spring依赖引入
<!-- WebFlux 响应式支持 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>
<!--ollama spring ai依赖-->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<version>1.0.0-M6</version>
</dependency>
<!-- Swagger3-knife4j依赖 -->
<dependency>
<groupId>com.github.xiaoymin</groupId>
<artifactId>knife4j-openapi3-jakarta-spring-boot-starter</artifactId>
<version>4.5.0</version>
</dependency>
ChatbotController
简单对话直接返回
@Slf4j
@RestController
public class ChatBotController {
//注入模型,配置文件中的模型,或者可以在方法中指定模型
@Resource
private OllamaChatModel model;
@GetMapping("/chat")
public String chat(@RequestParam("message") String message){
String call = model.call(message);
System.out.println(call);
return call;
}
}
启动
postman请求
返回
流式对话响应
@Slf4j
@RestController
public class ChatBotController {
//注入模型,配置文件中的模型,或者可以在方法中指定模型
@Resource
private OllamaChatModel model;
@Resource
private StringRedisTemplate stringRedisTemplate;
//引入存储消息服务
@Resource
private ChatService chatService;
@GetMapping(value = "/streamChat", produces = "text/event-stream;charset=UTF-8")
public Flux<String> streamChat(@RequestParam("message")String message,@RequestParam String sessionId){
Long userId = UserHolder.getUser().getId();
return Flux.concat(
processAnswering(message, sessionId, userId)
);}
/**
* 处理回答阶段
*/
private Flux<String> processAnswering(String message, String sessionId, Long userId) {
return buildPromptWithContext(sessionId, message)
.flatMapMany(prompt ->
model.stream(prompt)
.index()
.map(tuple -> {
// 第一个消息添加标识
if (tuple.getT1() == 0L) {
return "[ANSWER] " + tuple.getT2();
}
return tuple.getT2();
})
)
.doOnNext(content -> saveMessage(sessionId, userId, message, content))
.delayElements(Duration.ofMillis(30));
}
/**
* 保存消息到Redis和数据库(带事务)
*/
@Transactional
protected void saveMessage(String sessionId, Long userId, String question, String answer) {
// // 保存用户问题
// ChatContent userMsg = new ChatContent();
// userMsg.setSessionId(sessionId);
// userMsg.setMessage(question);
// chatService.save(userMsg);
// 保存AI回答
ChatContent aiMsg = new ChatContent();
// aiMsg.setSessionId(sessionId);
aiMsg.setReceiveUserId(userId);
aiMsg.setSendUserId(Long.valueOf(sessionId));
aiMsg.setMessage(answer);
// aiMsg.setType("ASSISTANT");
chatService.save(aiMsg);
// 更新Redis上下文
stringRedisTemplate.executePipelined((RedisCallback<Object>) connection -> {
connection.lPush((CONTEXT_PREFIX + sessionId).getBytes(),
question.getBytes(),
answer.getBytes()
);
connection.lTrim((CONTEXT_PREFIX + sessionId).getBytes(), 0, MAX_CONTEXT_LENGTH * 2 - 1);
return null;
});
}
}
请求postman
返回
可以看到返回的数据为流式的
前端引入
UI
<div class="bot-chat-container">
<!-- 聊天消息区域 -->
<div class="bot-chat-messages" ref="messagesContainer">
<div v-for="message in bot_messages" :key="message.id"
:class="['message', message.sender]">
<div class="avatar">
<img :src="message.sender === 'user' ? userAvatar : botAvatar" alt="avatar">
</div>
<div class="bubble">
<div class="content" v-html="renderMarkdown(message.content)"></div>
<!--
<div class="content" v-else>{{ message.content }}</div>
-->
<div class="status">
<span class="time">{{ message.timestamp }}</span>
<span v-if="message.loading" class="typing-indicator">
<span class="dot"></span>
<span class="dot"></span>
<span class="dot"></span>
</span>
</div>
</div>
</div>
</div>
<!-- 输入区域 -->
<div class="bot-input-area">
<textarea v-model="inputMessage"
@keydown.enter.exact.prevent="sendMessage"
placeholder="输入你的消息..."></textarea>
<button @click="sendMessage" :disabled="isSending">
<span v-if="!isSending">发送</span>
<span v-else class="sending-indicator"></span>
</button>
</div>
</div>
函数typescript
const sendMessage = async () => {
if (!inputMessage.value.trim() || isSending.value) return
// 用户消息
const userMsg: ChatMessage = {
id: Date.now().toString(),
content: inputMessage.value.trim(),
sender: 'user',
timestamp: new Date().toLocaleTimeString()
}
bot_messages.push(userMsg)
// 机器人响应占位
const botMsg: ChatMessage = {
id: `bot-${Date.now()}`,
content: '',
sender: 'bot',
timestamp: new Date().toLocaleTimeString(),
loading: true
}
bot_messages.push(botMsg)
inputMessage.value = ''
isSending.value = true
// scrollToBottom()
try {
const sessionId = crypto.randomUUID()
// const eventSource = new EventSource(`api/bot/streamChat?message=${encodeURIComponent(userMsg.content)}`)
// 发起带有 Authorization 头的流式请求
await fetchEventSource(`api/streamChat?message=${encodeURIComponent(userMsg.content)}&sessionId=333`, {
method: 'GET', // 或 POST(需服务端支持)
headers: {
'Authorization': sessionStorage.getItem("token"), // 注入认证头 :ml-citation{ref="8" data="citationList"}
},
onopen(response) {
if (response.ok) return; // 连接成功
throw new Error('连接失败');
},
onmessage(event) {
// 处理流式数据(与原 EventSource 逻辑相同)
const index = bot_messages.findIndex(m => m.id === botMsg.id)
if (index !== -1) {
bot_messages[index].content += event.data
bot_messages[index].loading = false
bot_messages[index].parsedContent = renderMarkdown(bot_messages[index].content)
// scrollToBottom()
}
},
onerror(err) {
console.error('流式请求异常:', err);
}
});
eventSource.onmessage = (event) => {
const index = bot_messages.findIndex(m => m.id === botMsg.id)
if (index !== -1) {
bot_messages[index].content += event.data
bot_messages[index].loading = false
bot_messages[index].parsedContent = renderMarkdown(bot_messages[index].content)
// scrollToBottom()
}
}
eventSource.onerror = () => {
eventSource.close()
isSending.value = false
}
} catch (error) {
console.error('Error:', error)
isSending.value = false
}
}
css
.bot-chat-container {
display: flex;
flex-direction: column;
height: 100vh;
background: #f5f5f5;
}
.bot-chat-messages {
flex: 1;
overflow-y: auto;
padding: 20px;
background: linear-gradient(180deg, #f0f2f5 0%, #ffffff 100%);
}
.message {
display: flex;
margin-bottom: 20px;
gap: 12px;
}
.message.user {
flex-direction: row-reverse;
}
.avatar img {
width: 40px;
height: 40px;
border-radius: 50%;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.bubble {
max-width: 70%;
position: relative;
}
.bubble .content {
padding: 12px 16px;
border-radius: 12px;
line-height: 1.5;
font-size: 14px;
}
.message.bot .content {
background: white;
border: 1px solid #e5e7eb;
border-radius: 12px 12px 12px 4px;
}
.message.user .content {
background: #3875f6;
color: white;
border-radius: 12px 12px 4px 12px;
}
.status {
display: flex;
align-items: center;
gap: 8px;
margin-top: 4px;
font-size: 12px;
color: #666;
}
.message.user .status {
justify-content: flex-end;
}
.typing-indicator {
display: inline-flex;
gap: 4px;
}
.dot {
width: 6px;
height: 6px;
background: #999;
border-radius: 50%;
animation: bounce 1.4s infinite ease-in-out;
}
.dot:nth-child(2) {
animation-delay: 0.2s;
}
.dot:nth-child(3) {
animation-delay: 0.4s;
}
@keyframes bounce {
0%, 80%, 100% { transform: translateY(0); }
40% { transform: translateY(-4px); }
}
.bot-input-area {
display: flex;
gap: 12px;
padding: 20px;
border-top: 1px solid #e5e7eb;
background: white;
}
textarea {
flex: 1;
padding: 12px;
border: 1px solid #e5e7eb;
border-radius: 8px;
resize: none;
min-height: 44px;
max-height: 120px;
font-family: inherit;
}
button {
padding: 0 20px;
background: #3875f6;
color: white;
border: none;
border-radius: 8px;
cursor: pointer;
transition: opacity 0.2s;
}
button:disabled {
background: #a0aec0;
cursor: not-allowed;
}
.sending-indicator {
display: inline-block;
width: 20px;
height: 20px;
border: 2px solid #fff;
border-top-color: transparent;
border-radius: 50%;
animation: spin 0.8s linear infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
.bubble :deep() pre {
background: #f8f8f8;
padding: 12px;
border-radius: 6px;
overflow-x: auto;
}
.bubble :deep() code {
font-family: 'JetBrains Mono', monospace;
font-size: 14px;
}
.bubble :deep() ul,
.bubble :deep() ol {
padding-left: 20px;
margin: 8px 0;
}
.bubble :deep() blockquote {
border-left: 4px solid #ddd;
margin: 8px 0;
padding-left: 12px;
color: #666;
}
发送消息
至此简单的AI对话完成了
源码地址
后端:https://github.com/enjoykanyu/chat_serve
前端:https://github.com/enjoykanyu/kChat_web
觉得不错得话,可以帮点个star呀,感谢
若在执行部署过程中有任何问题,欢迎githup提issue