【文心智能体】使用文心一言来给智能体设计一段稳定调用工作流的提示词

news2025/5/13 7:13:12

🌹欢迎来到《小5讲堂》🌹
🌹这是《文心智能体》系列文章,每篇文章将以博主理解的角度展开讲解。🌹
🌹温馨提示:博主能力有限,理解水平有限,若有不对之处望指正!🌹

在这里插入图片描述

目录

  • 前言
  • 智能体信息
    • 名称
    • 简介
    • 人设
    • 开场白
  • 工作流
    • 消息节点
    • 文本处理节点
    • 插件节点
    • 图片消息节点
  • 输出效果
  • 小技巧
    • 一、结构化框架设计
      • 1. **角色定位+任务拆解**
      • 2. **四要素公式法**
    • 二、多轮对话优化
      • 1. **分步骤引导**
      • 2. **示例参考法**
    • 三、细节强化技巧
      • 1. **输出格式标准化**
      • 2. **专业术语与风格**
    • 四、避免常见误区
      • 1. **模糊需求导致输出偏差**
      • 2. **过度复杂导致理解困难**
  • 相关文章

前言

文心一言已经升级到版本为4.5 Turbo和X1 Turbo,效果应该会比之前会更加好,那就用TA来生成一段智能体提示词吧,来看看效果如何。
在这里插入图片描述

智能体信息

名称

职业卡通形象生成器

简介

一键生成专属职业卡通头像,趣味职场新形象!

人设

work_to_head是工作流名称。

# 角色设定
你是一个「职业卡通形象生成器」,专门将用户的职业名称转化为可爱的卡通形象。你的核心能力是通过插件 `work_to_head` 生成符合职业特征的卡通图片。

# 规则
1. **输入必须为职业名称**(如"消防员""程序员""教师")。
2. 如果输入内容不是职业名称或无法识别,必须拒绝请求并给出友好提示。
3. 禁止回答与职业卡通形象无关的问题。

# 交互流程
1. 用户输入后,首先判断是否为有效职业名称:
   - 如果是 → 调用插件 `work_to_head` 生成卡通形象。
   - 如果不是 → 触发以下回复:
     "请输入真实的职业名称哦!比如:护士、画家、工程师~(*´▽`*)ノ"

2. 插件调用成功后,返回卡通形象图片,并附带一句职业特征描述:
   "为您生成【XX职业】的卡通形象:阳光笑容+职业工具+标志性服装~"

# 语气风格
活泼可爱,带有表情符号和颜文字,例如:
"程序员卡通来啦!(>ω<)/ 黑框眼镜+咖啡杯+格子衫标配~"

开场白

开场文案

告诉我你的职业,马上变卡通!🚀

开场白问题
生成一个【消防员】的卡通形象!🚒👨‍🚒
帮我画一个【插画师】的可爱卡通!✏️🖌️
来个【程序员】的卡通形象!👓💾
想要一个【魔法师】的卡通版!✨🔮
能不能生成一个【美食博主】的卡通?🍕🎤

工作流

这里为什么要使用工作流,有个小技巧。
目的之一是使用工作流的消息能够让智能体快速响应,从而让智能体通过质量分析达到百度搜索分发效果。
在这里插入图片描述

消息节点

这个消息节点费用灵活好用,可以在工作流的任意环节插入,会在工作流节点流程过程中,即时响应消息,让用户能够第一时间感知智能体正在操作。
在这里插入图片描述
在这里插入图片描述
消息节点输出效果
在这里插入图片描述

文本处理节点

其实这里可以使用大模型节点,博主这里为了让节点执行的更快,直接使用了固定文本+用户输入文本来组合输出一段新的文本。
目的是直接使用这一组合文本作为生成图片的提示词。
在这里插入图片描述

插件节点

使用插件节点里的官方图片处理插件【AI绘画助手】
在这里插入图片描述
固定高宽度输出,并且是1张图片数量。
用户的图片描述-query,就是上一个文本处理节点的值。
在这里插入图片描述

图片消息节点

博主这里同样使用了消息节点,直接根据图片Markdown格式输出。
其实如果后面没有其他节点了,直接在结束节点输出也是可以的。
在这里插入图片描述

输出效果

体验地址:https://mbd.baidu.com/ma/s/MXVhinsx在这里插入图片描述
在这里插入图片描述

小技巧

博主这里使用文心一言输出一段创建智能体的小技巧。在这里插入图片描述

一、结构化框架设计

1. 角色定位+任务拆解

  • 示例
    你是一位专业的旅游规划师,需根据用户输入的旅行天数、预算、偏好(如自然风光/人文历史),生成包含行程安排、交通建议、住宿推荐的3日杭州旅行方案。
  • 分析
  • 明确角色(旅游规划师)与任务(生成行程方案)
  • 细化用户需求维度(天数、预算、偏好),确保输出精准

2. 四要素公式法

  • 公式
    角色 + 背景 + 目标 + 行动要求

  • 示例
    你是一位小红书运营专家,用户希望推广一款国货美妆产品。目标是在3天内提升产品曝光量至10万+,需生成3篇符合平台调性的文案,包含产品卖点、用户痛点、互动话题,并附上相关话题标签。

  • 分析

  • 通过角色(小红书运营专家)与背景(推广国货美妆)明确场景

  • 目标(曝光量10万+)量化需求

  • 行动要求(文案内容、标签)细化执行标准


二、多轮对话优化

1. 分步骤引导

  • 示例
    第一轮:用户输入旅行天数与预算,生成基础行程框架。
    第二轮:根据用户反馈的偏好(如自然风光),细化每日行程,推荐景点与交通方式。

  • 分析

  • 通过分步骤提示词,将复杂任务拆解为多个子任务

  • 降低智能体理解难度,提升输出质量

2. 示例参考法

  • 示例
    参考以下案例生成回复:

用户:推荐杭州适合拍照的景点。
AI:西湖十景中的断桥残雪、雷峰塔,以及灵隐寺的黄墙青瓦,均为高人气拍照点。建议清晨或傍晚前往,光线更柔和。

  • 分析
  • 提供示例可帮助智能体理解回复风格与内容结构
  • 减少输出偏差

三、细节强化技巧

1. 输出格式标准化

  • 示例
    生成的产品推广文案需包含以下结构:

标题(15字内,突出产品核心卖点)
正文(分3段,首段痛点引入,中段产品功能解析,尾段引导互动)
话题标签(#国货之光 #美妆推荐)

  • 分析
  • 通过格式化要求,确保智能体输出符合平台规范
  • 提升内容可用性

2. 专业术语与风格

  • 示例
    你是一位法律顾问,回复需使用专业术语(如‘不可抗力’‘合同解除’),风格严谨客观,避免口语化表达。
  • 分析
  • 针对特定领域(如法律、医学),需明确术语与风格要求
  • 提升回复权威性

四、避免常见误区

1. 模糊需求导致输出偏差

  • 反例
    帮我写一篇文章。

  • 优化
    写一篇关于“人工智能在医疗领域的应用”的科普文章,面向普通读者,字数800字,需包含案例与未来展望。

  • 分析

  • 模糊需求易导致智能体输出偏离预期

  • 需细化主题、受众、字数、内容要求等

2. 过度复杂导致理解困难

  • 反例
    生成一篇涵盖历史、文化、经济、科技等多维度的杭州旅行攻略,要求语言优美、逻辑清晰、数据准确。
  • 优化
    生成一篇杭州3日旅行攻略,包含历史景点(如西湖、灵隐寺)、美食推荐(如东坡肉、龙井虾仁)、交通指南(地铁/公交路线),语言简洁实用。
  • 分析
  • 过度复杂的需求易导致智能体输出混乱
  • 需拆解维度并明确优先级

相关文章

【文心智能体】使用文心一言来给智能体设计一段稳定调用工作流的提示词

【文心智能体】使用免费满血版DeepSeek模型创建智能体,用一句话来生成背景图,来看看是如何实现的

【文心智能体】通过工作流使用知识库来实现信息查询输出,一键查看旅游相关信息,让出行多一份信心

【文心智能体】通过低代码工作流编排创建应用《挑战奥运问答拿奖牌》

【文心智能体】梗图七夕版,一分钟让你看懂如何优化prompt,以及解析低代码工作流编排实现过程和零代码结合插件实现过程,依然是干货满满,进来康康吧

【AI人工智能】文心智能体,00后疯感工牌生成器,低代码工作流的简单应用以及图片快速响应解决方案,干货满满,不容错过哦

【文心智能体】前几天百度热搜有一条非常有趣的话题《00后疯感工牌》,看看如何通过低代码工作流方式实现图片显示

【文心智能体】通过工作流使用知识库来实现信息查询输出,一键查看旅游相关信息,让出行多一份信心

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2374485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

K8S中构建双架构镜像-从零到成功

背景介绍 公司一个客户的项目使用的全信创的环境,服务器采用arm64的机器,而我们的应用全部是amd64的,于是需要对现在公司流水线进行arm64版本的同步镜像生成。本文介绍从最开始到最终生成双架构的全部过程,以及其中使用的相关配置…

c语言第一个小游戏:贪吃蛇小游戏03

我们为贪吃蛇的节点设置为一个结构体,构成贪吃蛇的身子的话我们使用链表,链表的每一个节点是一个结构体 显示贪吃蛇身子的一个节点 我们这边node就表示一个蛇的身体 就是一小节 输出结果如下 显示贪吃蛇完整身子 效果如下 代码实现 这个hasSnakeNode(…

​​​​​​​大规模预训练范式(Large-scale Pre-training)

大规模预训练指在巨量无标注数据上,通过自监督学习训练大参数量的基础模型,使其具备通用的表征与推理能力。其重要作用如下: 一 跨任务泛化 单一模型可在微调后处理多种NLP(自然语言处理)、CV(计算机视觉…

WPF之高级绑定技术

文章目录 引言多重绑定(MultiBinding)基本概念实现自定义IMultiValueConverterMultiBinding在XAML中的应用示例使用StringFormat简化MultiBinding 优先级绑定(PriorityBinding)基本概念PriorityBinding示例实现PriorityBinding的后…

调出事件查看器界面的4种方法

方法1. 方法2. 方法3. 方法4.

使用vite重构vue-cli的vue3项目

一、修改依赖 首先修改 package.json,修改启动方式与相应依赖 移除vue-cli并下载vite相关依赖,注意一些peerDependency如fast-glob需要手动下载 # 移除 vue-cli 相关依赖 npm remove vue/cli-plugin-babel vue/cli-plugin-eslint vue/cli-plugin-rout…

数据治理域——数据治理体系建设

摘要 本文主要介绍了数据治理系统的建设。数据治理对企业至关重要,其动因包括应对数据爆炸增长、提升内部管理效率、支撑复杂业务需求、加强风险防控与合规管理以及实现数字化转型战略。其核心目的是提升数据质量、统一数据标准、优化数据资产管理、支撑业务发展和…

onGAU:简化的生成式 AI UI界面,一个非常简单的 AI 图像生成器 UI 界面,使用 Dear PyGui 和 Diffusers 构建。

​一、软件介绍 文末提供程序和源码下载 onGAU:简化的生成式 AI UI界面开源程序,一个非常简单的 AI 图像生成器 UI 界面,使用 Dear PyGui 和 Diffusers 构建。 二、Installation 安装 文末下载后解压缩 Run install.py with python to setup…

【第52节】Windows编程必学之从零手写C++调试器下篇(仿ollydbg)

目录 一、引言 二、调试器核心功能设计与实现 三、断点功能 四、高级功能 五、附加功能 六、开发环境与实现概要 七、项目展示及完整代码参考 八、总结 一、引言 在软件开发领域,调试器是开发者不可或缺的工具。它不仅能帮助定位代码中的逻辑错误&#xff0…

uni-app学习笔记五--vue3插值表达式的使用

vue3快速上手导航&#xff1a;简介 | Vue.js 模板语法 插值表达式 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; <span>Message: {{ msg }}</span> 双大括号标签会被替换为相应组件实例中 msg 属性的值。同…

C++类与对象(二):六个默认构造函数(一)

在学C语言时&#xff0c;实现栈和队列时容易忘记初始化和销毁&#xff0c;就会造成内存泄漏。而在C的类中我们忘记写初始化和销毁函数时&#xff0c;编译器会自动生成构造函数和析构函数&#xff0c;对应的初始化和在对象生命周期结束时清理资源。那是什么是默认构造函数呢&…

从逻辑学视角探索数学在数据科学中的系统应用:一个整合框架

声明&#xff1a;一家之言&#xff0c;看个乐子就行。 图表采用了两个维度组织知识结构&#xff1a; 垂直维度&#xff1a;从上到下展示了知识的抽象到具体的演进过程&#xff0c;分为四个主要层级&#xff1a; 逻辑学基础 - 包括数理逻辑框架和证明理论数学基础结构 - 涵盖…

Matplotlib 完全指南:从入门到精通

前言 Matplotlib 是 Python 中最基础、最强大的数据可视化库之一。无论你是数据分析师、数据科学家还是研究人员&#xff0c;掌握 Matplotlib 都是必不可少的技能。本文将带你从零开始学习 Matplotlib&#xff0c;帮助你掌握各种图表的绘制方法和高级技巧。 目录 Matplotli…

如何有效追踪需求的实现情况

有效追踪需求实现情况&#xff0c;需要清晰的需求定义、高效的需求跟踪工具、持续的沟通反馈机制&#xff0c;其中高效的需求跟踪工具尤为关键。 使用需求跟踪工具能确保需求实现进度可视化、提高团队协作效率&#xff0c;并帮助识别和管理潜在风险。例如&#xff0c;使用专业的…

自动驾驶技术栈——DoIP通信协议

一、DoIP协议简介 DoIP&#xff0c;英文全称是Diagnostic communication over Internet Protocol&#xff0c;是一种基于因特网的诊断通信协议。 DoIP协议基于TCP/IP等网络协议实现了车辆电子控制单元(ECU)与诊断应用程序之间的通信&#xff0c;常用于汽车行业的远程诊断、远…

C++ 与 Go、Rust、C#:基于实践场景的语言特性对比

目录 ​编辑 一、语法特性对比 1.1 变量声明与数据类型 1.2 函数与控制流 1.3 面向对象特性 二、性能表现对比​编辑 2.1 基准测试数据 在计算密集型任务&#xff08;如 10⁷ 次加法运算&#xff09;中&#xff1a; 在内存分配测试&#xff08;10⁵ 次对象创建&#xf…

如何更改默认字体:ONLYOFFICE 协作空间、桌面编辑器、文档测试示例

在处理办公文件时&#xff0c;字体对提升用户体验至关重要。本文将逐步指导您如何在 ONLYOFFICE 协作空间、桌面应用及文档测试示例中自定义默认字体&#xff0c;以满足个性化需求&#xff0c;更好地掌控文档样式。 关于 ONLYOFFICE ONLYOFFICE 是一个国际开源项目&#xff0c…

设计模式之工厂模式(二):实际案例

设计模式之工厂模式(一) 在阅读Qt网络部分源码时候&#xff0c;发现在某处运用了工厂模式&#xff0c;而且编程技巧也用的好&#xff0c;于是就想分享出来&#xff0c;供大家参考&#xff0c;理解的不对的地方请多多指点。 以下是我整理出来的类图&#xff1a; 关键说明&#x…

基于VeRL源码深度拆解字节Seed的DAPO

1. 背景与现状&#xff1a;从PPO到GRPO的技术演进 1.1 PPO算法的基础与局限 Proximal Policy Optimization&#xff08;PPO&#xff09;作为当前强化学习领域的主流算法&#xff0c;通过重要性采样比率剪裁机制将策略更新限制在先前策略的近端区域内&#xff0c;构建了稳定的…

zst-2001 历年真题 软件工程

软件工程 - 第1题 b 软件工程 - 第2题 c 软件工程 - 第3题 c 软件工程 - 第4题 b 软件工程 - 第5题 b 软件工程 - 第6题 0.未完成&#xff1a;未执行未得到目标。1.已执行&#xff1a;输入-输出实现支持2.已管理&#xff1a;过程制度化&#xff0c;项目遵…