LangChain:大语言模型应用的“瑞士军刀”入门指南

news2025/5/13 2:20:16

LanChain入门指南

    • 什么是LangChain?
    • LangChain的核心价值
      • 1. 模块化设计 - AI界的"乐高积木"
      • 2. 典型应用场景
    • 快速入门实战
      • 环境准备
      • 第一个示例:公司命名生成器
      • 进阶功能:带记忆的对话机器人
    • 学习路线建议
    • 常见问题解答
    • 总结

什么是LangChain?

LangChain是一个开源的编排框架,专门用于基于大型语言模型(LLM)开发应用程序。它就像AI领域的"瑞士军刀",将复杂的语言模型能力封装成简单易用的模块,让开发者能像搭积木一样快速构建智能应用。

简单来说,LangChain解决了LLM应用的三大痛点:

  1. 模型孤岛问题:提供统一接口支持GPT、Claude、LLaMA等各类模型,无需为每个模型重写代码
  2. 数据隔离问题:轻松连接数据库、PDF、API等外部数据源,让模型能访问"训练数据之外"的信息
  3. 功能单一问题:通过"链"和"代理"机制,组合多个功能步骤完成复杂任务(如:提问→搜索→分析→输出)

自2022年10月由Harrison Chase发布后,LangChain已成为GitHub增长最快的开源项目之一,特别在ChatGPT引爆生成式AI热潮后,它让普通开发者也能轻松驾驭大模型能力。

LangChain的核心价值

1. 模块化设计 - AI界的"乐高积木"

LangChain将LLM应用开发拆解为六大组件,每个都像标准化积木块:

  • 模型I/O:统一不同LLM的调用方式(如GPT-4与本地模型)
  • 数据连接:从PDF、数据库等加载外部数据(检索增强生成/RAG)
  • 记忆管理:保存对话历史,实现上下文感知
  • 链(Chains):把多个步骤串联成工作流(如先检索再生成)
  • 代理(Agents):让LLM自主调用工具(如计算器、搜索API)
  • 回调系统:监控和调试模型交互过程

2. 典型应用场景

  • 智能客服:结合企业知识库的问答机器人
  • 文档分析:从合同/报告中提取关键信息并总结
  • 自动化办公:根据数据自动生成周报/分析报告
  • 编程助手:理解代码库上下文后回答问题

快速入门实战

环境准备

  1. 安装LangChain库:
    pip install langchain langchain_openai
    
  2. 获取OpenAI API密钥(官网申请),并设置为环境变量:
    export OPENAI_API_KEY="你的密钥"
    

第一个示例:公司命名生成器

from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI

# 1. 定义提示模板(避免硬编码)
prompt = PromptTemplate.from_template(
    "为生产{product}的公司起3个有创意的中文名字,并说明寓意"
)

# 2. 初始化模型(gpt-3.5-turbo)
llm = ChatOpenAI(model="gpt-3.5-turbo")

# 3. 组合成链
chain = prompt | llm

# 4. 调用链
response = chain.invoke({"product": "智能水杯"})
print(response.content)

输出示例

1. 智饮伴:寓意智能陪伴饮水,提醒健康生活
2. 水知音:像知心朋友一样了解你的饮水需求 
3. 杯联万物:强调物联网连接功能

这个例子展示了LangChain的核心三要素:提示模板模型调用链式组合

进阶功能:带记忆的对话机器人

from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain

# 1. 创建记忆模块
memory = ConversationBufferMemory()

# 2. 创建对话链
conversation = ConversationChain(
    llm=ChatOpenAI(),
    memory=memory
)

# 3. 多轮对话
print(conversation.run("你好,我叫小明")) 
print(conversation.run("我刚才说我叫什么名字?"))  # 能记住上下文!

关键点

  • ConversationBufferMemory会保存完整对话历史
  • 适合需要长期记忆的场景(如客服系统)

学习路线建议

  1. 基础阶段

    • 掌握Prompt模板设计(动态变量插入)
    • 理解LLM与ChatModel的区别(文本输入vs消息列表)
    • 熟悉简单链(LLMChain)的使用
  2. 中级阶段

    • 学习使用SequentialChain处理多步骤任务
    • 实践RAG(检索增强生成)连接私有数据
    • 掌握Agent让模型自主调用工具
  3. 高级阶段

    • 自定义工具和回调函数
    • 使用LangSmith监控模型性能
    • 通过LangServe部署链为API

常见问题解答

Q:LangChain必须用OpenAI的模型吗?
A:不是!它支持HuggingFace、Anthropic等数十种模型,甚至本地部署的LLM。

Q:适合非Python开发者吗?
A:LangChain也提供JavaScript/TypeScript版本,安装命令:npm install langchain

Q:生产环境要注意什么?
A:建议:

  1. 使用异步调用提高性能
  2. 设置速率限制避免API超额
  3. 用LangSmith监控质量

总结

LangChain通过标准化接口和模块化设计,大幅降低了LLM应用开发门槛。就像用乐高积木搭建城堡,开发者无需从烧制砖块开始,直接组合现成模块就能构建智能应用。无论是简单的文本生成,还是需要连接数据库、调用API的复杂系统,LangChain都能提供优雅的解决方案。

下一步建议

  • 官方文档:python.langchain.com
  • 实战项目:尝试用RetrievalQA链构建个人知识库助手
  • 社区交流:加入LangChain Discord获取最新动态

技术更新快,但核心思想永不过时。掌握LangChain的模块化思维,就能在AI浪潮中快速搭建自己的方舟。——与所有开发者共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2374334.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

web 自动化之 selenium+webdriver 环境搭建及原理讲解

文章目录 一、web 自动化测试学习说明二、什么 web 自动化测试三、selenium 简介四、web自动化测试环境搭建五、web 自动化测试第一个脚本六、selenium 原理及源码讲解 一、web 自动化测试学习说明 进阶 web 自动化测试学习:掌握 python 编程基础 二、什么 web 自…

2025ISCC练武校级赛部分题解WP

Web 战胜卞相壹 <!-- 路过的酒罐王柯洁九段说&#xff1a; --> <!-- 会叠棋子有什么用&#xff01;你得在棋盘内战胜他&#xff01;我教你个定式&#xff0c;要一直记得&#xff01;一直&#xff01; --> <!-- SGF B[ae];B[ce];B[df];B[cg];B[ag];B[ai];B[ci];…

PyTorch 版本、torchvision 版本和 Python 版本的对应关系

PyTorch 版本、torchvision 版本和 Python 版本的对应关系 在深度学习领域&#xff0c;PyTorch 及其配套库 torchvision 的使用极为广泛。但不同版本的 PyTorch、torchvision 与 Python 之间存在严格的对应关系&#xff0c;若版本搭配不当&#xff0c;会导致代码运行出错…

RS485和RS232 通信配置

RS232 目前硬件上支持RS232的有以下板卡&#xff1a; LubanCat-5IO底板&#xff08;含有RS232x2&#xff09; 7.1. 引脚定义 具体的引脚定义可以参考背面的丝印 LubanCat-5IO底板 引脚定义图 7.2. 跳帽配置 LubanCat-5IO底板 鲁班买5IO底板上的RS485和RS232是共用同一组…

zst-2001 历年真题 设计模式

设计模式 - 第1题 a 设计模式 - 第2题 一个产品可以产生多个就是抽象&#xff0c;一个就是工厂 比如这样 第二题a是意图 bc: d 设计模式 - 第3题 b 设计模式 - 第4题 类图里全是builder,疯狂暗示 设计模式 - 第5题 aa 设计模式 - 第6题 只有工厂方法是创…

鸿蒙NEXT开发动画案例4

1.创建空白项目 2.Page文件夹下面新建Spin.ets文件&#xff0c;代码如下&#xff1a; /*** TODO SpinKit动画组件 - 双粒子旋转缩放动画* author: CSDN-鸿蒙布道师* since: 2025/05/08*/ ComponentV2 export struct SpinFour {// 参数定义Require Param spinSize: number 36…

XML语言

XML语言 在开始介绍Mybatis之前&#xff0c;先介绍一下XML语言&#xff0c;XML语言发明最初是用于数据的存储和传输&#xff0c;它是由一个一个的标签嵌套而成 <?xml version"1.0" encoding"UTF-8" ?> <outer> <name>阿伟</name&…

基于SpringBoot的小区停车位管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

VR博物馆,足不出户云逛展

VR博物馆概念与特点 定义与由来 VR博物馆&#xff0c;即虚拟现实(Virtual Reality)博物馆&#xff0c;是利用计算机技术、互联网和虚拟现实技术&#xff0c;将实体博物馆及其藏品数字化&#xff0c;实现在虚拟空间中的展示和体验的新型博物馆形式。概念起源于20世纪90年代末&…

uniapp|实现多终端聊天对话组件、表情选择、消息发送

基于UniApp框架,实现跨平台多终端适配的聊天对话组件开发、表情选择交互设计及消息发送,支持文本与表情混合渲染。 目录 聊天界面静态组件实现消息列表布局消息气泡双向布局辅助元素定位与样式静态数据模拟与扩展性设计表情选择器静态模块浮层实现符号网格排列多端样式适配方…

73页最佳实践PPT《DeepSeek自学手册-从理论模型训练到实践模型应用》

这份文档是一份关于 DeepSeek 自学手册的详细指南&#xff0c;涵盖了 DeepSeek V3 和 R1 模型的架构、训练方法、性能表现以及使用技巧等内容。它介绍了 DeepSeek V3 作为强大的 MoE 语言模型在数学、代码等任务上的出色表现以及其训练过程中的创新架构如多头潜在注意力和多 To…

stm32 WDG看门狗

目录 stm32 WDG看门狗一、WDG基础知识1&#xff09;WDG&#xff08;Watchdog&#xff09;看门狗简介 二、IWDG独立看门狗1&#xff09;IWDG键寄存器2&#xff09;IWDG超时时间 三、WWDG窗口看门狗1&#xff09;WWDG框图2&#xff09;WWDG工作特性3&#xff09;WWDG超时时间4&am…

BUUCTF——Cookie is so stable

BUUCTF——Cookie is so stable 进入靶场 页面有点熟悉 跟之前做过的靶场有点像 先简单看一看靶场信息 有几个功能点 flag.php 随便输了个admin 根据题目提示 应该与cookie有关 抓包看看 构造payload Cookie: PHPSESSIDef0623af2c1a6d2012d57f3529427d52; user{{7*7}}有…

用go从零构建写一个RPC(仿gRPC,tRPC)--- 版本1(Client端)

这里我们来实现这个RPC的client端 为了实现RPC的效果&#xff0c;我们调用的Hello方法&#xff0c;即server端的方法&#xff0c;应该是由代理来调用&#xff0c;让proxy里面封装网络请求&#xff0c;消息的发送和接受处理。而上一篇文章提到的服务端的代理已经在.rpc.go文件中…

一文读懂 AI

2022年11月30日&#xff0c;OpenAI发布了ChatGPT&#xff0c;2023年3月15日&#xff0c;GPT-4引发全球轰动&#xff0c;让世界上很多人认识了ai这个词。如今已过去快两年半&#xff0c;AI产品层出不穷&#xff0c;如GPT-4、DeepSeek、Cursor、自动驾驶等&#xff0c;但很多人仍…

【LeetCode Hot100 | 每日刷题】二叉树的层序遍历

题目&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]]示例 2&a…

SpringBoot3集成Oauth2——1(/oauth2/token方法的升级踩坑)

备注&#xff1a;本文适用于你在SpringBoot2.7以前集成过oauth2&#xff0c;并且项目已经正式投入使用的情况&#xff0c;否则&#xff0c;我建议你直接学习或者找资料学习最新的oauth2集成&#xff0c;就不要纠结于老版本的oauth2。 原因&#xff1a;Spring Security 5.x和Sp…

基于Qt开发的多线程TCP服务端

目录 一、Qt TCP服务端开发环境准备1. 项目配置2. 核心类说明 二、服务端搭建步骤详解步骤1&#xff1a;初始化服务端对象步骤2&#xff1a;启动端口监听步骤3&#xff1a;处理客户端连接 三、数据通信与状态管理1. 数据收发实现2. 客户端状态监控 四、进阶功能扩展1. 多客户端…

Centos离线安装mysql、redis、nginx等工具缺乏层层依赖的解决方案

Centos离线安装mysql、redis、nginx等工具缺乏层层依赖的解决方案 引困境yum-utils破局 引 前段时间&#xff0c;有个项目有边缘部署的需求&#xff0c;一台没有的外网的Centos系统服务器&#xff0c;需要先安装jdk&#xff0c;node&#xff0c;mysql&#xff0c;reids&#xf…

从零开始开发纯血鸿蒙应用之XML解析

从零开始开发纯血鸿蒙应用 〇、前言一、鸿蒙SDK中的 XML API1、ohos.xml2、ohos.convertxml 三、XML 解析实践1、源数据结构2、定义映射关系3、定义接收对象4、获取文章信息 四、总结 〇、前言 在前后端的数据传输方面&#xff0c;论格式化形式&#xff0c;JSON格式自然是首选…